Угломерные инструменты древних вавилонян сектанты и октанты

Угломерные инструменты древних вавилонян сектанты и октанты

В данной работе представлены астрономические инструменты, которыми пользовались ученые до изобретения телескопа.

Скачать:

ВложениеРазмер
astronomicheskie_instrumenty.pptx1.47 МБ
Предварительный просмотр:

Подписи к слайдам:

Астрономические инструменты дотелескопической эпохи. Выполнили ученики 7-ого класса ГБОУ СОШ №1455 Сочина Ольга, Платонов Николай

Самый первый астрономический инструмент – глаз. Уже в результате визуальных наблюдений люди заметили, что небо поворачивается вокруг нас, а Солнце и Луна восходят и заходят. Смена фаз Луны положена в основу календаря. Открыты Меркурий, Венера, Марс, Юпитер. Открыты особенности годового движения Солнца.

Стоунхедж – самый первый памятник человеческой мысли Это была гигантская о бсерватория, с помощью к оторой определяли день л етнего солнцестояния (Солнце в этот день н аходится над самым большим камнем). Она также использовалась для предсказаний с олнечных и лунных затмений .

Гномон Это любой предмет, дающий тень. Ее длина наименьшая в полдень и указывает направление не север. Гномон позволяет определить также угловую высоту солнца, широту и долготу места. Чем выше гномон, тем точнее измерения.

Солнечные часы Это прибор для определения времени по изменению длины тени от гномона и её движению по циферблату. Появление этих часов связано с моментом, когда человек осознал взаимосвязь между длиной и положением солнечной тени от тех или иных предметов и положением Солнца на небе.

Астрономический посох Для измерения небесных координат Гиппарх использовал две планки. Поперечная планка на астрономическом посохе устанавливалась так, чтобы лучи от двух светил, проходя сквозь визирные отверстия на планке, попадали в визирные отверстия на посохе и в глаз наблюдателя.

Астролябия Основные задачи, которые решались с помощью астролябии: – определение времени суток по наблюдениям высот Солнца или звезд; -составление гороскопов; -определение азимута небесного светила; -определение звездного времени; – определение момента восхода и захода Солнца, а также восхода звезд и планет.

Устройство астролябии Первая астролябия состояла из двух дисков, на один из которых наносится карта неба, а на другом диске по краю располагается угловая шкала. Между собой они соединялись в центре и могли свободно вращаться .

Квадрант Квадрантом называют устройство , которое служит для измерения углов, со шкалой, рассчитанной на 90 °. Благодаря точности этих инструментов были созданы самые подробные астрономические таблицы.

Чем больше размеры квадранта, тем точнее наблюдения. Инструмент Аль-Бируни имел размер 7,5м, а квадрант Улугбека в Самарканде – 40,2 м. С помощью квадранта определяли высоту и склонение звезд.

Армиллярная сфера Армилла применялась в качестве упрощенного небесного глобуса, наглядно представляющего движения различных небесных светил, а также основные точки и линии небесной сферы .

Что можно продемонстрировать при помощи армиллярной сферы: — движение небесной сферы в любой точке Земли. — места восхода и захода зодиакальных созвездий и их суточное движение. — восход, заход и суточное движение Солнца и Луны и его изменение в течение года, а также особенности этого движения на различных широтах. — перемещения Солнца, Луны и планет по зодиаку. — движение узлов лунной орбиты и объяснение периодичности затмений. — экваториальную, эклиптическую и горизонтальную системы координат.

от проекта «Инфоурок»

Угломерные инструменты древних вавилонян сектанты и октантыУгломерные инструменты древних вавилонян сектанты и октанты

Описание презентации по отдельным слайдам:

ДРЕВНИЕ АСТРОНОМИЧЕСКИЕ ИНСТРУМЕНТЫ Выполнила ученица 5 «А» класса Чернозубова Юлия Руководитель: Исаканова Елена Викторовна

Небесные светила интересовали людей с незапамятных времён. Ещё до революционных открытий Галилея и Коперника астрономы предпринимали неоднократные попытки выяснить закономерности и законы движения планет и звёзд и использовали для этого специальные инструменты.

Календарь из Уоррен Филда Странные углубления на поле Уоррен обнаружили в 1976 году, но только в 2004 году было определено, что это древний лунный календарь.

Как полагают ученые, найденному календарю порядка 10 000 лет. Он выглядит как 12 углублений, расположенных по дуге в 54 метра. Каждая лунка синхронизирована с лунным месяцем в календаре.

Стоунхедж Это была гигантская обсерватория, с помощью которой определяли день летнего солнцестояния (Солнце в этот день находится над самым большим камнем). Она также использовалась для предсказаний солнечных и лунных затмений.

Гномон Это любой предмет, дающий тень. Ее длина наименьшая в полдень и указывает направление не север. Гномон позволяет определить также угловую высоту солнца, широту и долготу места.

Армиллярная сфера Армиллярная сфера — один из древнейших астрономических приборов, изобретенный более двух тысяч лет назад, вероятнее всего в древнем Вавилоне. Армилла применялась в качестве упрощенного небесного глобуса, наглядно представляющего движения различных небесных светил, а также основные точки и линии небесной сферы.

Астролябия Это угломерный снаряд, употребляющийся для астрономических и геодезических наблюдений. Астролябия применялась Гиппархом для определения долгот и широт звезд. Первая астролябия состояла из двух дисков, на один из которых наносится карта неба, а на другом диске по краю располагается угловая шкала. Между собой они соединялись в центре и могли свободно вращаться.

Основные задачи, которые решались с помощью астролябии: определение времени суток по наблюдениям высот Солнца или звезд; составление гороскопов; определение азимута небесного светила; определение звездного времени; определение момента восхода и захода Солнца, а также восхода звезд и планет.

Квадрант Квадрантом называют устройство, которое служит для измерения углов, со шкалой, рассчитанной на 90°. Благодаря точности этих инструментов были созданы самые подробные астрономические таблицы.

Абу Махмуд Хамид ибн аль-Хидр Аль-Худжанди создал секстант , который был сделан в виде фрески, расположенной на 60-градусной дуге между двумя внутренними стенами здания. Эта огромная 43-метровая дуга была поделена на градусы. Мало того, каждый градус был с ювелирной точностью разделен на 360 частей, что сделало фреску потрясающе точным солнечным календарем. Над дугой Аль-Худжанди располагался куполообразный потолок с отверстием посередине, сквозь которое солнечные лучи падали на древний секстант.

Читать также:  Распиновка скарт разъема на тюльпан

Телескоп Галилея Первый телескоп-рефрактор был сконструирован в 1609 году Галилеем. Галилей, основываясь на слухах об изобретении голландцами зрительной трубы, разгадал её устройство и изготовил образец, который впервые использовал для астрономических наблюдений.

Все телескопы Галилея были весьма несовершенны, но несмотря на это, в течение двух первых лет наблюдений ему удалось обнаружить четыре спутника планеты Юпитер, фазы Венеры, пятна на Солнце, горы на поверхности Луны

Астрономический компендиум Представляет собой набор небольших инструментов для математических расчетов в едином футляре. В компендиум входят пассажный инструмент для определения времени ночи по звездам, перечень широт, магнитный компас, перечень портов и гаваней, вечный календарь и лунный указатель. Компендиум мог использоваться для определения времени, высоты прилива в портах, а также календарных расчетов. Можно сказать, что это древний миникомпьютер.

Угломерные инструменты древних вавилонян сектанты и октанты

Угломерные инструменты древних вавилонян сектанты и октанты

Угломерные инструменты древних вавилонян сектанты и октанты

Угломерные инструменты древних вавилонян сектанты и октанты

  • Исаканова Елена ВикторовнаНаписать 595 15.10.2018

Номер материала: ДБ-150555

ВНИМАНИЮ УЧИТЕЛЕЙ: хотите организовать и вести кружок по ментальной арифметике в своей школе? Спрос на данную методику постоянно растёт, а Вам для её освоения достаточно будет пройти один курс повышения квалификации (72 часа) прямо в Вашем личном кабинете на сайте “Инфоурок”.

Пройдя курс Вы получите:
– Удостоверение о повышении квалификации;
– Подробный план уроков (150 стр.);
– Задачник для обучающихся (83 стр.);
– Вводную тетрадь «Знакомство со счетами и правилами»;
– БЕСПЛАТНЫЙ доступ к CRM-системе, Личному кабинету для проведения занятий;
– Возможность дополнительного источника дохода (до 60.000 руб. в месяц)!

Пройдите дистанционный курс «Ментальная арифметика» на проекте “Инфоурок”!

Низкая стоимость обучения

Не требуется ЕГЭ

    14.10.2018 246
    11.10.2018 77
    09.10.2018 110
    07.10.2018 127
    07.10.2018 175
    04.10.2018 240
    02.10.2018 90
    26.09.2018 252

Не нашли то что искали?

Вам будут интересны эти курсы:

Угломерные инструменты древних вавилонян сектанты и октанты

Угломерные инструменты древних вавилонян сектанты и октанты

Угломерные инструменты древних вавилонян сектанты и октанты

Угломерные инструменты древних вавилонян сектанты и октанты

Угломерные инструменты древних вавилонян сектанты и октанты

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение редакции может не совпадать с точкой зрения авторов.

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако редакция сайта готова оказать всяческую поддержку в решении любых вопросов связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

← УглокрыльницаУгломерные астрономические инструменты
Энциклопедический словарь Брокгауза и Ефрона
Углеша Мрнявчевич →
Угломерные инструменты древних вавилонян сектанты и октантыСловник: Углерод — Усилие. Источник: т. XXXIVa (1902): Углерод — Усилие, с. 494—497 ( скан )

Угломерные астрономические инструменты. — Большинство задач практич. астрономии сводится к измерению видимых угловых расстояний между светилами на небесной сфере, или к определению тех углов, которые составляет луч зрения, проведенный к светилу с основными выбранными плоскостями и линиями. Для измерения малых угловых расстояний, когда обе звезды умещаются зараз в поле зрения оптического инструмента, употребляются так наз. микрометры (см.), т. е. измерение угла сводится к измерению линейного расстояния между изображениями звезд, полученными в фокальной плоскости объектива зрительной трубы. К особому классу микрометров, дающих двойное изображение каждого объекта, относится гелиометр (см.) — инструмент, объектив которого разрезан пополам. Каждая половина дает в фокальной плоскости отдельное изображение звезды, и измерение углового расстояния между двумя близкими звездами сводится к определению того, насколько надо раздвинуть половинки объектива, чтобы одно из изображений первой звезды слилось с одним из изображений второй звезды, т. е. сводится к оценке некоторой длины. — Для измерения больших углов употребляются почти исключительно круги, на которых нанесены деления. Впрочем, углы в плоскостях, параллельных небесному экватору, можно измерять промежутками времени, пользуясь точной равномерностью вращения земли вокруг ее оси: нужно замечать последовательно моменты прохождений (см.) звезд через меридиональную плоскость и затем превратить промежуток времени в градусы (в угловую меру), исходя из того, что 360°, или полный оборот, соответствует 24 звездным часам. Чаще всего производится измерение координат светил относительно плоскости горизонта, т. е. их высот и азимутов. В противоположность древним астрономам теперь никогда не измеряют непосредственно эклиптикальные координаты — долготу и широту, и только в исключительных случаях определяют экваториалами (см.) непосредственно прямое восхождение и склонение светил вне меридиана. Устройство всех У. инструментов сводится к следующему: неподвижно установленный, деленный на градусы и минуты круг называется лимбом; зрительная труба насаживается на могущую вращаться ось, расположенную в центре лимба перпендикулярно к его плоскости; с трубой неизменно связан другой круг (концентрический первому) «алидадный», несущий индекс или штрих, служащий для отсчета деленного круга. Для точнейшей оценки положения индекса относительно делений лимба, т. е. положения зрительной трубы, служили прежде так наз. верньеры (см.), а теперь обыкновенно приделываются к алидадному кругу микроскопы. Тогда индексом служит нить, натянутая в фокальной плоскости микроскопа. Можно, наоборот, как это делается в современных меридианных кругах и других больших У. инструментах обсерваторий, деленный круг наглухо приделать к могущей вращаться на оси трубе, а неподвижно укрепить «алидадную» раму, несущую микроскопы. Если лимб уклоняется от своего нормального положения, его по возможности исправляют так наз. поправочными винтами, а остающиеся небольшие инструментальные ошибки определяют из специальных изысканий, и за них исправляют результаты наблюдений; так, при помощи уровня (см.) находят уклон оси вращения меридианного круга от горизонтального положения; из наблюдений полярной звезды определяют отклонение плоскости круга от меридиана; особенными приборами или же подобными же наблюдениями полярных звезд определяют так наз. коллимационную ошибку, т. е. несовпадение оптической оси трубы с линией перпендикулярной той оси, на которой вращается круг. Эта ось вращения может не проходить точно через центр деленного круга, получится так назыв. эксцентриситет круга. Для избежания влияния этой ошибки отсчитывают не один, но два микроскопа, насаженные на противоположных концах одного и того же диаметра. Отсчитывание нескольких микроскопов, кроме того, ведет к уменьшению случайной ошибки отсчета, а также и к исключению так наз. ошибок делений круга. Нет средств абсолютно точно разделить круг. Каждый штрих на нем имеет некоторую ошибку. Исследование ошибок делений составляет одну из главнейших и в то же время утомительнейших задач при изучении У. инструментов. На больших меридианных кругах расстояние между соседними штрихами соответствует 2′, исследование индивидуальных ошибок всех 10800 штрихов почти неисполнимо. Лучшим мастерам удается, однако, сглаживать индивидуальные ошибки, и можно принимать, что штрихи целыми группами — в иных частях круга чуть-чуть расставлены шире чем через 2′, в других частях круга — теснее, что позволяет ограничиться исследованием ошибок сравнительно небольшого числа штрихов, напр., через каждый градус. От собственной тяжести большие трубы прогибаются, необходимо вводить в наблюдения поправки на изгиб; также может деформироваться от тяжести и сам деленный круг. Ввиду точности, требуемой от современных наблюдений, необходимо принимать во внимание самые, на первый взгляд, пустые влияния; напр.: если только поднести руку к концу горизонтально поставленной трубы меридианного круга, она, неправильно расширяясь от теплоты руки, ничтожно согнется, а выпрямляется только очень медленно, и это уже может сказаться на наблюдениях; микроскопы у меридианных кругов делают очень длинными, чтобы теплота тела наблюдателя не искажала отсчетов; ни под каким видом не следует прикасаться к каменным устоям, на которых обыкновенно расположены меридианные круги, и т. д. Гораздо меньших забот требуют, но и гораздо менее точные результаты дают переносные У. инструменты, употребляемые для геодезических и астрономич. работ вне обсерваторий (теодолиты, малые вертикальные круги, универсальные инструменты и проч.). Основная идея их устройства та же, что и для больших «постоянных» У. инструментов обсерваторий; устанавливаются они, однако, на сравнительно непрочных столбах или даже на треногах; деления круга почти не исследуются, а для исключения их ошибок употребляется так назыв. повторительный метод (см.), т. е. угол (напр., между земными предметами при триангуляциях) измеряют последовательно различными частями лимба; для исследования устойчивости переносного инструмента к нему приделывается поверительная труба (см.); инструментальные ошибки не определяются особо, а исключаются целесообразным распределением наблюдений, напр., произведя наблюдение в одном положении инструмента, приводят его в другое положение, где данная ошибка имела бы обратное прежнему влияние, и принимают затем, что средняя величина двух результатов свободна от влияния этой ошибки. Краткое описание этих инструментов см. Универсальный инструмент. В путешествиях, а в особенности при наблюдениях на кораблях, употребляют такие У. инструменты, которые при измерениях можно держать в руках. Сюда относятся отражательные инструменты: секстанты и призмозеркальные круги. В поле зрения трубы такого инструмента видны сразу оба предмета, угловое расстояние между которыми измеряется; один предмет виден непосредственно, а другой путем отражения луча зрения от двух зеркал (или от зеркала и внутри призмы). Одно зеркало неподвижно, другое вращается вместе с трубой и алидадой. Секстант получил свое название от того, что снабжен не полным кругом, а только одной шестой его частью. Эти инструменты дают точность вполне удовлетворительную для целей мореходной астрономии. Они имеют то преимущество, что посредством них можно измерять углы, в какой угодно плоскости, между какими угодно двумя звездами, между звездой (или планетой) и Луной (так наз. лунные расстояния) и т. д. Для определения высоты Солнца или иного светила над горизонтом, вместо того чтобы «совмещать» изображение Солнца в поле зрения трубы с изображением линии горизонта — можно совмещать Солнце с отражением его от горизонтальной поверхности жидкости, напр. от налитой в чашку ртути (так наз. искусственный горизонт), и таким образом определять двойную высоту Солнца над горизонтом.

Читать также:  Блок питания на регулируемом стабилитроне тл 431

Древнейшим У. инструментом служил гномон. Из сравнения длины тени с высотой гномона выводили угловую высоту Солнца над горизонтом. Для наблюдения других светил (не отбрасывающих тени) еще в древности были придуманы так наз. параллактические линейки (triquetrum): один стержень ставили вертикально, другой горизонтально, по ним могла скользить третья линейка, постоянной длины, ее направление совмещали с лучом зрения к светилу и отсчитывали деления, нанесенные на обоих основных стержнях. Для определения диаметров Солнца и Луны Гиппарх пользовался стержнем, который нужно было держать в руке, по нему скользил небольшой диск. Этот же астроном ввел впервые во всеобщее употребление деление кругов на 360 градусов, раньше было в ходу деление окружности на 10, 20 или 50 равных частей. Гномон и линейки определяли только высоту светила, понадобились средства для определения других углов на небесной сфере. Всякие У. инструменты получили громадное значение, как только развилась тригонометрия, т. е. найдена возможность «решать» треугольники. Основным инструментом греческих астрономов были армиллы (см.) — концентрические, вставленные одно в другое под различными углами кольца или круги с делениями на градусы, и с визирами, или диоптрами, которые можно было передвигать по кругам, и при помощи которых брались направления на светило. Простейшие армиллы (экваториальные) состояли из двух кругов, одного параллельно плоскости экватора, другого к нему перпендикулярного. Эклиптикальные армиллы, или астролябии, состояли из четырех кругов, именно, добавляли круг, изображавший эклиптику, и круг колюра солнцестояний. При помощи армилл отсчитывались непосредственно прямое восхождение и склонение или долгота и широта светил. Так, сохранилось определение еще Тимохарисом разностей долгот Луны и звезды α Virginis. Диоптры помещались иногда не на самом круге, а на концах линейки, которая могла вращаться вокруг центра круга (алидада). Экваториальные армиллы и астролябия были в большом ходу у арабов; экземпляр XIII в. с куфическими письменами хранится в Нюрнбергском музее. Армиллами пользовались европейские астрономы до Тихо Браге. Особый тип инструмента, изобретенный Региомонтаном и прозванный torquetum, состоял из трех систем кругов, отнесенных к плоскостям экватора, эклиптики и горизонта. Астролябия, употреблявшаяся Коперником, давала точность до 10 минут. В Китае вместо армиллярных кругов употреблялись полные сферы. Там узаконена была высота гномона в 8 фт., и Ко-чу-кинг первый в XIII в. решился удлинить гномон, с целью увеличения точности наблюдений. Для определения высот светила кроме линеек служили так наз. стенные круги и квадранты. В обсерватории Птолемея был водружен вертикально в меридиане плоский камень (plinthis), с боковой стороны его была вырезана дуга четверти круга, деленная на градусы; наблюдалось, на какое деление упадет тень от мушки, помещенной в центре этой круговой дуги. В знаменитом стенном квадранте Тихо Браге стена была вырезана по дуге круга, на ребре нанесены деления, по ним перемещалась диоптра, а другая диоптра приходилась в центре круговой дуги. Кроме стенных строились и «переносные» квадранты, секстанты и пр. из металла. Не умея делить точно на градусы и минуты полный круг, ограничивались, как показывают сами названия инструментов, четвертой, шестой, восьмой частью круга. С целью увеличить точность отсчета, увеличивали радиус деленной дуги; так, в Багдадской обсерватории был сектор радиусом в 17 м; в XVII стол. Гук построил сектор в 11 метров. Были изобретены различные приемы для возможно точного отсчитывания деленных дуг (об этом см. Нониус, Верньер); Траутон предложил (в начале XIX столет.) для этой цели микроскопы. После изобретения зрительных труб они заменили древние визиры и диоптры. Впервые применили оптические трубы к У. инструментами Дженерини и Морен около 1630 г. Тогда же придумали для визирования натягивать в фокальной плоскости трубы волосы, шелковые нитки; в 1775 г. Фонтана предложил употреблять для этой цели паутинки. При ночных наблюдениях явилась необходимость освещать поле зрения или самые нити. Инициатором здесь был Гасконь. В XVIII в. изобретено было кольцо, надевавшееся на объектив трубы и бросавшее рассеянный свет в трубу. Маскелин (1772) предложил помещать зеркальце перед объективом, теперь такое зеркальце прилепляется с внутренней поверхности объектива для отражения лучей света, введенных от боковой лампы через ось вращения трубы в ее полость (этот прием употребил впервые Рамсден в 1790 г.). Рёмер указал преимущества полного круга перед квадрантом, секстантом и т. д., но привилась эта идея окончательно лишь после того, как Рамсден сконструировал удовлетворительные «вертикальные круги» (1785). Увеличившаяся точность наведения потребовала точности нанесения штрихов на деленных дугах. Гук (1664) приложил принцип микрометрического винта для деления кругов и построил первую машину для этой цели. Улучшили ее Рамсден и Рейхенбах. Последний предложил вместо алидад помещать полный алидадный круг. Он же придал меридианному кругу современный тип. Эртель и Репсольд изменили вид этого основного астрономического инструмента сравнительно несущественно. Об уровне — см. это сл. Для наблюдений на море Раймонд Люлль изобрел (1295) морскую астролябию: металлический круг подвешивали за ушко на веревку; линейка, укрепленная в центре круга (иногда составная из двух), скользила по кругу и служила для визирования светила. В большом ходу у моряков вплоть до конца XVIII столетия был так называемый крест палок (baculus Jacob). Более длинная палка поддерживалась рукою, на этой палке скользила другая, к той перпендикулярная; наблюдатель искал такое положение этой палки, чтобы концы ее приходились для глаза против предметов, угловое расстояние которых желали определить. Известный мореплаватель Дэвис изобрел (конец XVI столетия) названный по его имени квадрант. Этот инструмент состоял из двух секторов с двумя диоптрами; наблюдатель становился спиной к Солнцу и искал положение инструмента, при котором мушка в центре квадранта освещалась Солнцем сквозь одну диоптру, тогда сквозь другую диоптру наблюдатель визировал линию горизонта. Все эти грубые приемы были вытеснены после изобретения отражательного секстанта. В бумагах Ньютона найдено было описание очень близкого к морскому секстанту отражательного инструмента. Совершенно, впрочем, независимо от Ньютона секстант был изобретен и построен в 1731 г. капитаном Гадлеем. — В следующем сопоставлении видно постепенное увеличение точности измерений У. Гиппарх с помощью своих армилл мог измерять долготы лишь до 1°. Арабские астрономы довели точность до 7—10′. Примерно той же точностью обладали наблюдения средневековых европейских астрономов. Большой стенной квадрант Тихо Браге давал углы до 1′. Гевелий при помощи диоптр и деленных кругов измерял уже до ½—⅓ минуты. Точность сразу повысилась с введением оптических труб. Знаменитые наблюдения Брадлея ошибочны только до 2—3 угловых секунд. В начале XIX столетия наблюдения в больших обсерваториях (Гринвичской, Парижской) ошибочны менее 1″. Вероятная ошибка одного определения склонения звезды пулковским большим вертикальным кругом равна 0.″2.

Читать также:  Как запаять латунный радиатор в домашних условиях

“>

Оцените статью
Добавить комментарий

Adblock
detector