Схема подключения электромагнитного реле

Содержание
  1. Схема устройства защитного отключения
  2. Схема усовершенствованного варианта устройства защиты
  3. Устройство и принцип действия
  4. Структуру электромагнитного реле можно разделить на его отдельные составные элементы следующим образом:
  5. Разновидности электромагнитных реле
  6. По конструктивным особенностям исполнительных элементов электромагнитные реле делятся на:
  7. По области применения реле:
  8. По мощности сигнала управления:
  9. По быстродействию управления:
  10. По виду напряжения управления:
  11. Реле постоянного тока разделяют:
  12. Реле переменного тока не имеют таких недостатков, у них есть свои отрицательные моменты:
  13. По защищенности от внешних факторов реле разделяют:
  14. К таким реле времени предъявляются специальные требования:
  15. Параметры электромагнитных реле
  16. Основные параметры реле:
  17. Сфера использования
  18. Электромагнитные реле, функционирующие в качестве релейной защиты, получили популярность из-за следующих достоинств:

Несмотря на стремительный прогресс в области бесконтактных полупроводниковых коммутационных устройств, применение электромагнитных реле в ряде случаев обеспечивает лучшее соотношение цена/надежность устройства.

В данной статье рассматриваются схемотехнические решения, позволяющие значительно уменьшить потребляемую обмотками реле мощность, увеличить их надежность, зачастую избавить от необходимости подбора реле с конкретными параметрами обмотки. Рассмотреныпрактические схемы реализации таких устройств.

Как известно, у реле постоянного тока есть два основных параметра: напряжение срабатывания Ucp и напряжение удержания Uуд. Как правило, Uуд в 1,5-3 раза меньше, чем Ucp. В идеальном случае Ucp нужно подать только на время срабатывания реле, а затем поддерживать Uуд. На практике Ucp подается на реле все время. Нетрудно подсчитать, какой лишний расход мощности.

На рис.1 показана схема, приблизительно обеспечивающая соотношение Ucp=2Uп, Uуд=Uп, где Uп – напряжение питания схемы. Эта схема позволяет организовать управление реле с обмоткой на 24 В при напряжении питания схемы 12 В. Мощность, потребляемая обмоткой при включенном состоянии реле, снижается в 4 раза.

Схема подключения электромагнитного реле

Рис. 1. Схема обеспечивающая нужное соотношение для напряжения срабатывания и отпускания реле.

Конденсатор С3 заряжается через диод VD1 и резистор R3 до напряжения Uс3, примерно равному Uп. Для включения реле на базу транзистора VT1 подается напряжение открывания. Зарядный ток конденсатора С1 открывает транзистор VT2, на обмотку реле подается суммарное напряжение Uп+Uс2 (примерно 23 В), и реле срабатывает.

После разряда С3 на обмотку реле через VT1, VD1 поступает Uп, этого достаточно для удержания реле. При снятии напряжения с базы VT1 реле выключается благодаря наличию диода VD3. С1 быстро разряжается, и схема возвращается в исходное состояние.

Диод VD2 служит, как обычно, для гашения напряжения самоиндукции обмотки реле.

Номиналы конденсаторов С1-С3, параметры диодов и транзисторов, Uп схемы могут варьироваться в зависимости от типа применяемого реле. При достаточной нагрузочной способности источника питания конденсатор С2 можно исключить.

На рис.2 показана схема, позволяющая организовать управление довольно мощным реле РП-21 с обмоткой на 12 В (сопротивление обмотки 80 Ом). При традиционном подходе для этого потребовался бы источник питания с применением дорогого понижающего трансформатора.

Схема подключения электромагнитного реле

Рис. 2. Схема управления мощным реле РП-21 с обмоткой на 12 В.

В исходном состоянии транзисторы VT1 и VT2 открыты током резистора R3. Напряжения на конденсаторе С2 недостаточно для срабатывания реле. При нажатии кнопки SB1 "Пуск" транзистор VT2 закрывается и конденсатор С2 заряжается до напряжения, примерно равного напряжению стабилизации стабилитрона VD6 (примерно 14 В).

При отпускании кнопки SB1 через открытые VT1 и VT2 напряжение с конденсатора С2 прикладывается к обмотке реле и вызывает его срабатывание. Ток перезаряда конденсатора С1 обеспечивает дальнейшее удержание реле во включенном состоянии. При нажатии на кнопку SB2 "Стоп" зарядный ток конденсатора С3 вызывает кратковременное закрытие транзисторов, что приводит к отпусканию реле.

Данная схема позволяет организовать также однокнопочное управление: нажатие в течение более 0,5 с и последующее отпускание кнопки SB1 приводит к срабатыванию реле, последующее кратковременное нажатие этой же кнопки выключает его. Можно заменить кнопку SB1 электронным ключом и управлять реле с помощью электрических сигналов. При необходимости обеспечить гальваническую развязку очень удобно применить диодный или транзисторный оптрон.

Номиналы элементов схемы для конкретного типа реле выбирают из следующих соображений: ток перезарядки конденсатора С1 должен удерживать реле во включенном состоянии и быть недостаточным для его срабатывания; напряжение стабилизации VD6 выбирают равным номинальному напряжению обмотки реле; емкость конденсатора С2 выбирают из условия надежного срабатывания реле, а С3 – его выключения. Параметры элементов VD1-VD5, VT1, VT2 выбирают в зависимости от номинальных значений тока и напряжения обмотки реле.

Хорошие результаты дает использование реле с обмоткой, рассчитанной на переменный ток при питании ее постоянным (пульсирующим) током. При экспериментах с довольно мощным реле РЭН-20, имеющим обмотку на 220 В, для удержания реле во включенном состоянии достаточно было подавать на обмотку постоянное напряжение всего 6. 8 В. Примерно такие же результаты были получены с широко распространенным магнитным пускателем ПМЕ-211 с обмоткой на 380 В.

Самый простой способ оптимизации схемы включения магнитного пускателя основан на питании его обмотки пульсирующим напряжением по схеме рис.3. Диод VD1 осуществляет однополупериодное выпрямление сетевого напряжения; через диод VD2 замыкается напряжение самоиндукции обмотки.

Пускатель ПМЕ-211 с обмоткой на 380 В при таком включении надежно срабатывает от напряжения 220 В, практически устраняется гудение, иногда сопровождающее включение пускателей, значительно уменьшается нагрев обмотки. Очень удобно таким образом запитать от сети 220 В реле с обмоткой на более низкое напряжение, например 110 В, подобрав номинал гасящего резистора R1, на котором при данной схеме включения будет рассеиваться мощность в несколько раз меньше, чем при непосредственном включении обмотки в сеть через гасящий резистор.

На рис.4 показан пример оптимизации включения реле РЭН-20 с обмоткой на 220 В. При включении в сеть возникает импульс тока заряда конденсатора С1, его достаточно для срабатывания реле; дальнейшее удержание реле во включенном состоянии обеспечивает протекание тока примерно в 1 мА через резистор R1. Потребляемая мощность и нагрев обмотки при этом во много раз меньше, чем в случае обычного включения, значительно повышается надежность реле.

Схема подключения электромагнитного реле

Рис. 3. Схема включения магнитного пускателя для питания его обмотки пульсирующим напряжением.

Подобным образом можно включать и другие типы реле, подобрав необходимые значения R1 и С1.

Схема подключения электромагнитного реле

Рис. 4. Пример оптимизации включения реле РЭН-20 с обмоткой на 220 В.

В схеме на рис.5 конденсатор С1 заряжается до амплитудного значения напряжения сети и обеспечивает срабатывание реле при замыкании кнопки "Пуск", ток удержания определяется номиналом резистора R1.

Схема подключения электромагнитного реле

Рис. 5. Схема включения реле РЭН-20 и ПМЕ-211.

На рис.6 показана упрощенная схема реализации устройства (например, таймера, терморегулятора), включение которого производится вручную нажатием кнопки "Пуск", а выключение -сигналом от схемы управления (СУ) при достижении заданного значения параметра, который регулируется (время, температура). Схема обеспечивает непосредственное управление магнитным пускателем с обмоткой на 220 (380) В и гальваническую развязку от сети.

Схема подключения электромагнитного реле

Рис. 6. Схема устройства (таймера, терморегулятора), включение которого производится вручную нажатием кнопки, а выключение сигналом от схемы.

При нажатии кнопки B1 "Пуск" конденсатор С1 отключается от катушки магнитного пускателя и подключается через ограничивающий резистор R1 к сети, заряжаясь до амплитудного значения напряжения сети. Импульс разрядного тока конденсатора С1, возникающий при отпускании кнопки, вызывает срабатывание магнитного пускателя КМ1, импульс напряжения с обмотки пускателя кратковременно открывает транзистор VT2, устанавливая СУ в исходное состояние.

На выходе СУ устанавливается низкий уровень напряжения, ключ на транзисторе VT1 через развязывающий диод VD4 подает на обмотку пускателя напряжение 12 В, достаточное для удержания ее во включенном состоянии.

После того как регулируемый параметр достигает заданного значения, меняется уровень сигнала на выходе СУ, обмотка пускателя обесточивается и нагрузка выключается. На рис.7 показан пример модернизации устройства, описанного в [1], позволивший исключить промежуточное маломощное реле, значительно снизить потребляемую мощность и повысить надежность.

Схема подключения электромагнитного реле

Рис. 7. Схема модернизации устройства.

Схема устройства защитного отключения

На рис. 8 показана практическая схема устройства защитного отключения (УЗО), разработанная с использованием вышеизложенных принципов оптимизации включения реле. Применение усилителя на микросхеме DA1 позволило значительно упростить изготовление дифференциального трансформатора (ДТ) Т1.

Читать также:  Как подключить трехфазный двигатель на одну фазу

Схема подключения электромагнитного реле

Рис. 8. Схема устройства защитного отключения (УЗО) питания от сети 220В.

Принцип работы устройства не отличается от традиционного: при отсутствии тока утечки с нагрузки на "землю" токи, протекающие через обмотки I и II, равны и компенсируют друг друга, напряжение на обмотке III практически отсутствует. При возникновении тока утечки на выходе микросхемы DA1 возникает пропорциональное ему усиленное напряжение.

Положительные полуволны этого напряжения вызывают заряд через стабилизатор тока на транзисторе VT2 и конденсаторе С5. Снижение напряжения на нижней по схеме обкладке конденсатора С5 ниже напряжения на базе транзистора VT1 вызывает запирание последнего и выключение реле, нагрузка обесточивается.

Управление реле в основном реализовано по схеме рис.2. При нажатии на кнопку SB2 "Пуск" конденсатор С2 заряжается до напряжения примерно 13 В, которое при отпускании кнопки вызывает срабатывание и самоблокировку (через контакт К1.1) реле К1.

Падение напряжения на резисторе R4 используется для обеспечения двухполярного питания (±7 В) микросхемы DA1; светодиод VD6 – индикатор включения устройства. Времязадающая цепочка C5R9 обеспечивает подавление кратковременных импульсных помех с выхода DA1, возникающих, например, при искрении контактов, соединяющих устройство с нагрузкой.

Кнопка SB1 "Тест" создает искусственную "утечку" и служит для проверки работоспособности и выключения устройства. Устройство может выполнять функцию автоматического выключения при превышении заданного тока нагрузки – необходимо установить в схему резистор R2 такого номинала, чтобы вследствие определяемой им разности токов обмоток I и II ДТ при заданном максимальном токе нагрузки происходило выключение реле К1.

При изготовлении ДТ на ферритовое кольцо с наружным диаметром 20 мм равномерно наматывают обмотку III -100 витков провода 00,1. 0,3 мм. Затем приклеивают трансформатор Т1 к плате и устанавливают обмотки I и II – впаивают на плату две П-образные скобки из медного провода 00,5.1 мм, проходящие через отверстие кольца.

На рис.9, 10 показаны соответственно рисунок печатной платы и схема расположения элементов. Удобно выполнить устройство в виде сетевой вилки, использовав корпус малогабаритного блока питания.

Схема подключения электромагнитного реле

Рис. 9. Печатная плата для схемы устройства.

Схема подключения электромагнитного реле

Рис. 10. Расположение деталей на печатной плате.

Схема усовершенствованного варианта устройства защиты

На рис.11 показана принципиальная схема усовершенствованного варианта устройства защиты электродвигателей. В качестве исполнительного устройства используется непосредственно магнитный пускатель. В устройстве применена самая распространенная и дешевая элементная база.

Помимо обычной защиты от пропадания одной из фаз, устройство обеспечивает защиту электродвигателя от перегрева, а также от значительного перекоса фаз, который вызывает перегрев.

При нажатии кнопки SB1 "Пуск" обмотка магнитного пускателя КМ1 через диод VD5 подключается к одной из фаз сети, что вызывает срабатывание пускателя и подачу напряжения на нагрузку (электродвигатель). После отпускания кнопки "Пуск" ток, удерживающий пускатель во включенном состоянии, протекает через блокирующий контакт (БЛК) пускателя, цепочку R5R6C3VD4. Диод VD3 обеспечивает перезарядку конденсатора С3.

В случае отсутствия напряжения одной (двух) фаз пульсирующее напряжение на выходе однополу-периодного трехфазного выпрямителя VD5, VD7, VD8 имеет провалы до нуля, уровень пульсаций на выходе фильтра R7C2 увеличивается настолько, что каскад на элементах R2, VD2, VT2 начинает ограничивать амплитуду пульсирующего напряжения на обмотке пускателя КМ1, вызывая выключение последнего и обесточивание нагрузки.

Схема подключения электромагнитного реле

Рис. 11. Принципиальная схема усовершенствованного варианта устройства защиты электродвигателей.

В случае наличия всех трех фаз, но значительном отличии амплитудного значения их напряжений (перекос фаз) уровень пульсаций на выходе фильтра R7C2 недостаточен для выключения пускателя каскадом R2VD2VT2. Каскад на транзисторе VT3 сравнивает напряжения на выходах фильтра R7C2 и делителя R9R8.

При определенном уровне перекоса фаз (в зависимости от положения движка переменного резистора R14) пульсации напряжения на резисторе R4 начинают открывать транзисторы VT4 и VT1, конденсатор С1 разряжается, каскад на транзисторе VT2 ограничивает амплитуду пульсирующего напряжения на обмотке пускателя, приводя к выключению последнего.

Датчик температуры – германиевый диод VD10 – имеет тепловой контакт с корпусом электродвигателя. При повышении температуры корпуса обратное сопротивление диода уменьшается, что приводит к открыванию транзисторов VT5, VT3, VT2 и выключению пускателя.

Схема подключения электромагнитного реле

Рис. 12. Печатная плата для схемы защиты электродвигателей.

Переменным резистором R12 регулируют температуру срабатывания устройства. Транзистор VT6 используется как стабилитрон на 7 В.

Схема подключения электромагнитного реле

Рис. 13. Расположение деталей на печатной плате.

Рисунок печатной платы устройства и схема установки элементов показаны на рис.12, 13. Устройство защиты можно выполнить в штатном блоке управления, использовав его магнитный пускатель и кнопочный пульт.

В.Н. Каплун. г. Северодонеик. Луганская обл., Украина. Электрик-2004-12.

Литература: 1. Яковлев В.Ф. Устройство для защиты трехфазных потребителей//Электрик. -2001. – №10.

Основной составляющей частью кибернетики и систем автоматики являются процессы коммутации. Первыми устройствами, выполняющими коммутацию в автоматических электрических цепях, были электромагнитные реле.

Благодаря техническому прогрессу появились полупроводниковые коммутаторы. Однако электромагнитные реле не теряют своей популярности по применению в различном электрооборудовании и устройствах. Широкое использование реле обуславливается их неоспоримыми достоинствами, к которым относятся свойства металлических контактов.

Сопротивление контактов реле наименьшее, в отличие от коммутаторов на основе полупроводниковых элементов. Контакты реле выдерживают намного выше токовые перегрузки, чем полупроводниковые коммутаторы. Реле нормально функционируют при наличии статического электричества, радиационного излучения. Основным положительным качеством реле является гальваническая изоляция цепи управления и коммутации без дополнительных элементов.

Устройство и принцип действия

Структуру электромагнитного реле можно разделить на его отдельные составные элементы следующим образом:

  • Первичный (чувствительный) элемент преобразует электрический сигнал управления в магнитную силу. Обычно этим элементом является катушка.
  • Промежуточный элемент может состоять из нескольких частей. Он приводит в работу исполнительный механизм. Таким элементом является якорь с подвижными контактами и пружиной.
  • Исполнительный элемент выполняет передачу воздействия на силовую цепь. Таким элементом чаще всего выступает группа силовых контактов реле.

Электромагнитные реле имеют довольно простой принцип работы, вследствие чего имеют повышенную надежность. Они являются незаменимыми элементами в схемах защиты и автоматики. Действие реле заключается в применении электромагнитных сил, появляющихся в металлическом сердечнике при протекании электрического тока по катушке.

Элементы реле устанавливаются на закрывающемся крышкой основании. Подвижная пластина (якорь) с контактом установлена над сердечником электромагнита. Подвижных контактов может быть несколько. Напротив них расположены соответствующие пары неподвижных контактов.

Схема подключения электромагнитного реле

1 — Катушка реле
2 — Сердечник
3 — Стержень
4 — Подвижный якорь
5 — Группа контактов
6 — Пружина
7 — Питание катушки

В первоначальном положении пружина удерживает подвижную пластину. При подключении питания срабатывает электромагнит и притягивает к себе эту пластину, являющуюся якорем, преодолевая усилие пружины. В зависимости от устройства реле контакты при этом размыкаются или замыкаются. После выключения питания якорь под действием пружины возвращается в исходное положение.

Существуют электромагнитные реле с встроенными электронными компонентами в виде конденсатора, подключенного параллельно контактам для уменьшения помех и образования искр, а также сопротивления, подключенного к катушке, для четкой работы реле.

По силовой цепи, которая подключается контактами, может протекать электрический ток намного больше тока управления. Эта цепь гальванически развязана с цепью управления электромагнитом. Другими словами реле играет роль усилителя мощности, напряжения и тока в электрической цепи.

Электромагнитные реле переменного тока приводятся в действие при подключении к ним переменного тока частотой 50 герц. Устройство такого реле практически не отличается от реле постоянного тока, кроме сердечника электромагнита, который в данном случае выполняется из листовой электротехнической стали. Это делается для снижения потерь энергии от вихревых токов.

Разновидности электромагнитных реле

По различным признакам и факторам такие реле делятся на виды. Рассмотрим подробнее основные виды электромагнитных реле.

По конструктивным особенностям исполнительных элементов электромагнитные реле делятся на:

  • Контактные реле , которые оказывают воздействие на силовую цепь группой электрических контактов. Их разомкнутое или замкнутое состояние способно обеспечить коммутацию (разрыв или соединение) выходной силовой цепи.
  • Бесконтактные реле оказывают действие на силовую цепь методом резкого изменения ее параметров (емкости, индуктивности, сопротивления), либо силы тока и напряжения.

По области применения реле:

  • Сигнализации.
  • Защиты.
  • Цепей управления.
Читать также:  Показания ареометра для аккумулятора

По мощности сигнала управления:

  • Высокой мощности более 10 ватт.
  • Средней мощности 1-9 ватт.
  • Малой мощности менее 1 ватта.

По быстродействию управления:

  • Безинерционные менее 0,001 с.
  • Быстродействующие 0,001-0,05 с.
  • Замедленные 0,05-1 с.
  • Регулируемые.

По виду напряжения управления:

  • Переменного тока.
  • Постоянноготока (поляризованные и нейтральные).

Рассмотрим подробнее реле постоянного тока, которые делятся на два подвида – нейтральные и поляризованные. Они имеют отличие в том, что поляризованные устройства имеют чувствительность к полярности подключаемого напряжения. Якорь изменяет направление движения в зависимости от подключенных полюсов питания.

Реле постоянного тока разделяют:

  • 2-х позиционные.
  • 2-х позиционные с преобладанием.
  • 3-позиционные с нечувствительной зоной.

Функционирование нейтральных электромагнитных реле не зависит от порядка подключения полюсов напряжения. Недостатками реле постоянного тока является потребность в блоке питания, а также высокая стоимость.

Реле переменного тока не имеют таких недостатков, у них есть свои отрицательные моменты:

  • Вибрация при эксплуатации, необходимость ее устранения.
  • Параметры работы намного хуже, чем у реле постоянного тока. К ним относятся: магнитное поле, чувствительность.

К достоинствам устройств реле постоянного тока можно отнести отсутствие необходимости в блоке питания, и возможности непосредственного подключения в сеть переменного напряжения.

По защищенности от внешних факторов реле разделяют:

  • Герметичные.
  • Зачехленные.
  • Открытые.
Реле тока

Структура реле напряжения и тока очень похожа. Их отличие заключается только в конструкции катушки. Токовое реле имеет катушку с небольшим числом витков и малым сопротивлением. Намотка провода на катушку осуществляется толстым проводником.

Схема подключения электромагнитного реле

Обмотка реле напряжения выполняется с большим числом витков. Каждое из этих реле выполняет контроль определенных параметров с помощью системы автоматического отключения и включения электрического устройства.

Реле тока осуществляет контроль силы тока в цепи потребителя, к которой оно подключено. Данные поступают в другую цепь с помощью подключения сопротивления контактом реле. Подключение может осуществляться как непосредственно к силовой цепи, так и через измерительные трансформаторы.

Реле времени

В цепях автоматики часто требуется образование задержки при включении устройств, либо подачи сигнала для выполнения определенного технологического процесса по некоторому алгоритму. Для таких целей предназначены специальные устройства, способные коммутировать цепи с некоторой задержкой времени.

Схема подключения электромагнитного реле

К таким реле времени предъявляются специальные требования:

  • Необходимая и достаточная мощность контактов.
  • Малые габаритные размеры, вес и небольшой расход электроэнергии.
  • Стабильные рабочие параметры задержки времени, не зависящие от внешних воздействий.

Для реле времени, управляющим электрическими приводами, повышенные требования не предъявляются. Их задержка равна от 0,25 до 10 с. Эксплуатационная надежность таких реле должна быть очень высока, так как условия работы предполагают наличие вибрации.

Параметры электромагнитных реле

Основными характеристиками таких реле являются зависимости между входным и выходным параметром.

Основные параметры реле:

  • Время срабатывания реле – характеризует промежуток времени от момента подачи сигнала на вход реле до момента начала действия на силовую цепь.
  • Управляемая мощность – это мощность, которой способны управлять контакты реле при коммутации цепи.
  • Мощность срабатывания – это наименьшая мощность, требуемая для чувствительного элемента реле, для перехода в рабочее состояние.
  • Величина тока срабатывания. Такое регулируемое значение называется уставкой.
  • Сопротивление обмотки катушки.
  • Ток отпускания – максимальная величина тока на клеммах обмотки реле, при котором якорь отпадает в исходное положение.
  • Время отпускания якоря.
  • Частота коммутаций с нагрузкой – частота, с которой может осуществляться подключение и отключение силовой цепи.
Преимущества
  • Возможность коммутации силовых цепей с мощностью потребителя до 4 киловатт при объеме реле меньше 10 куб. см.
  • Невосприимчивость к пульсациям и чрезмерным напряжениям, а также устойчивость к помехам от молнии и работы устройств высокого напряжения.
  • Гальваническая развязка между цепью управления и силовыми контактами.
  • Незначительное снижение напряжения на замкнутых контактных группах, вследствие чего низкое тепловыделение.
  • Невысокая стоимость электромагнитного реле в отличие от полупроводниковых устройств.
Недостатки
  • Низкое быстродействие.
  • Небольшой срок службы.
  • Образование радиопомех при коммутации цепей.
  • Проблемы при подключении и отключении высоковольтных нагрузок постоянного тока и индуктивных потребителей.

Сфера использования

Широкую популярность получили реле в области производства и распределения электрической энергии. Безаварийный режим эксплуатации обеспечивает релейная защита линий высокого напряжения на подстанциях и в других местах. Элементы управления, применяемые в релейной защите, способны на подключение высоковольтных цепей. Э

Электромагнитные реле, функционирующие в качестве релейной защиты, получили популярность из-за следующих достоинств:

  • Возможность работы с невосприимчивостью к возникающим паразитным потенциалам.
  • Высокая скорость реагирования на изменение параметров подключенных цепей.
  • Повышенная долговечность.

С помощью релейной защиты выполняется резервирование линий питания и оперативное отключение неисправных участков цепи. Электромагнитные реле являются наиболее надежной защитой, в отличие от релейных устройств.

Электромагнитные реле применяется в управлении производственными линиями, конвейерами, на участках с повышенными паразитными потенциалами, там, где нельзя использовать полупроводниковые элементы.

Принцип действия, по которому работают такие устройства реле, применяется в оборудовании для удаленного управления потребителями, а именно в контакторах, пускателях. По сути дела, это такие же электромагнитный вид реле, только рассчитанные для очень больших токов, достигающих несколько тысяч ампер.

Релейные блоки применяются для управления емкостных установок, служащих для плавного запуска электродвигателей повышенной мощности.

Электромагнитные реле применялись даже в первых вычислительных комплексах. В них реле использовались как логические элементы, выполняющие простые логические операции. Скорость работы таких электронно-вычислительных машин была низкая. Однако такие своеобразные компьютеры были более надежными, в отличие от последующего поколения ламповых моделей вычислительных машин.

Сегодня можно привести множество примеров применения электромагнитных реле в бытовых устройствах: стиральных машинах, холодильниках и т.д.

Реле́ – электрический аппарат, предназначенный для коммутации электрических цепей (скачкообразного изменения выходных величин) при заданных изменениях электрических или не электрических входных величин.

Релейные элементы (реле) находят широкое применение в схемах управления и автоматики, так как с их помощью можно управлять большими мощностями на выходе при малых по мощности входных сигналах; выполнять логические операции; создавать многофункциональные релейные устройства; осуществлять коммутацию электрических цепей; фиксировать отклонения контролируемого параметра от заданного уровня; выполнять функции запоминающего элемента и т. д.

Первое реле было изобретено американцем Дж. Генри в 1831 г. и базировалась на электромагнитном принципе действия, следует отметить что первое реле было не коммутационным, а первое коммутационное реле изобретено американцем С. Бризом Морзе в 1837 г. которое в последствии он использовал в телеграфном аппарате. Слово реле возникло от английского relay, что означало смену уставших почтовых лошадей на станциях или передачу эстафеты (relay) уставшим спортсменом.

Схема подключения электромагнитного реле

Реле классифицируются по различным признакам: по виду входных физических величин, на которые они реагируют; по функциям, которые они выполняют в системах управления; по конструкции и т. д. По виду физических величин различают электрические, механические, тепловые, оптические, магнитные, акустические и т.д. реле. При этом следует отметить, что реле может реагировать не только на значение конкретной величины, но и на разность значений (дифференциальные реле), на изменение знака величины (поляризованные реле) или на скорость изменения входной величины.

Реле обычно состоит из трех основных функциональных элементов: воспринимающего, промежуточного и исполнительного.

Воспринимающий (первичный) элемент воспринимает контролируемую величину и преобразует её в другую физическую величину.

Промежуточный элемент сравнивает значение этой величины с заданным значением и при его превышении передает первичное воздействие на исполнительный элемент.

Исполнительный элемент осуществляет передачу воздействия от реле в управляемые цепи. Все эти элементы могут быть явно выраженными или объединёнными друг с другом.

Воспринимающий элемент в зависимости от назначения реле и рода физической величины, на которую он реагирует, может иметь различные исполнения, как по принципу действия, так и по устройству. Например, в реле максимального тока или реле напряжения воспринимающий элемент выполнен в виде электромагнита, в реле давления – в виде мембраны или сильфона, в реле уровня – в вице поплавка и т.д.

По устройству исполнительного элемента реле подразделяются на контактные и бесконтактные.

Контактные реле воздействуют на управляемую цепь с помощью электрических контактов, замкнутое или разомкнутое состояние которых позволяет обеспечить или полное замыкание или полный механический разрыв выходной цепи.

Читать также:  Клапан электромагнитный для сварочного полуавтомата

Бесконтактные реле воздействуют на управляемую цепь путём резкого (скачкообразного) изменения параметров выходных электрических цепей (сопротивления, индуктивности, емкости) или изменения уровня напряжения (тока).

Схема подключения электромагнитного релеОсновные характеристики реле определяются зависимостями между параметрами выходной и входной величины.

Различают следующие основные характеристики реле.

1. Величина срабатывания Хср реле – значение параметра входной величины, при которой реле включается. При Х

2. Мощность срабатывания Рср реле – минимальная мощность, которую необходимо подвести к воспринимающему органу для перевода его из состояния покоя в рабочее состояние.

3. Управляемая мощность Рупр – мощность, которой управляют коммутирующие органы реле в процессе переключении. По мощности управления различают реле цепей малой мощности (до 25 Вт), реле цепей средней мощности (до 100 Вт) и реле цепей повышенной мощности (свыше 100 Вт), которые относятся к силовым реле и называются контакторами.

4. Время срабатывания tср реле – промежуток времени от подачи на вход реле сигнала Хср до начала воздействия на управляемую цепь. По времени срабатывания различают нормальные, быстродействующие, замедленные реле и реле времени. Обычно для нормальных реле tср = 50…150 мс, для быстродействующих реле tср 1 с.

Принцип действия и устройство электромагнитных реле

Электромагнитные реле, благодаря простому принципу действия и высокой надежности, получили самое широкое применение в системах автоматики и в схемах защиты электроустановок. Электромагнитные реле делятся на реле постоянного и переменного тока. Реле постоянного тока делятся на нейтральные и поляризованные. Нейтральные реле одинаково реагируют на постоянный ток обоих направлений, протекающий по его обмотке, а поляризованные реле реагируют на полярность управляющего сигнала.

Работа электромагнитных реле основана на использовании электромагнитных сил, возникающих в металлическом сердечнике при прохождении тока по виткам его катушки. Детали реле монтируются на основании и закрываются крышкой. Над сердечником электромагнита установлен подвижный якорь (пластина) с одним или несколькими контактами. Напротив них находятся соответствующие парные неподвижные контакты.

В исходном положении якорь удерживается пружиной. При подаче напряжения электромагнит притягивает якорь, преодолевая её усилие, и замыкает или размыкает контакты в зависимости от конструкции реле. После отключения напряжения пружина возвращает якорь в исходное положение. В некоторые модели, могут быть встроены электронные элементы. Это резистор, подключенный к обмотке катушки для более чёткого срабатывания реле, или (и) конденсатор, параллельный контактам для снижения искрения и помех.

Схема подключения электромагнитного реле

Управляемая цепь электрически никак не связана с управляющей, более того в управляемой цепи величина тока может быть намного больше чем в управляющей. То есть реле по сути выполняют роль усилителя тока, напряжения и мощности в электрической цепи.

Реле переменного тока срабатывают при подаче на их обмотки тока определенной частоты, то есть основным источником энергии является сеть переменного тока. Конструкция реле переменного тока напоминает конструкцию реле постоянного тока, только сердечник и якорь изготавливаются из листов электротехнической стали, чтобы уменьшить потери на гистерезис и вихревые токи.

Достоинства и недостатки электромагнитных реле

  • способность коммутации нагрузок мощностью до 4 кВт при объеме реле менее 10 см3;
  • устойчивость к импульсным перенапряжениям и разрушающим помехам, появляющимся при разрядах молний и в результате коммутационных процессов в высоковольтной электротехнике;
  • исключительная электрическая изоляция между управляющей цепью (катушкой) и контактной группой — последний стандарт 5 кВ является недоступной мечтой для подавляющего большинства полупроводниковых ключей;
  • малое падение напряжения на замкнутых контактах, и, как следствие, малое выделение тепла: при коммутации тока 10 А малогабаритное реле суммарно рассеивает на катушке и контактах менее 0,5 Вт, в то время как симисторное реле отдает в атмосферу более 15 Вт, что, во-первых, требует интенсивного охлаждения, а во-вторых, усугубляет парниковый эффект на планете;
  • экстремально низкая цена электромагнитных реле по сравнению с полупроводниковыми ключами

Отмечая достоинства электромеханики, отметим и недостатки реле: малая скорость работы, ограниченный (хотя и очень большой) электрический и механический ресурс, создание радиопомех при замыкании и размыкании контактов и, наконец, последнее и самое неприятное свойство — проблемы при коммутации индуктивных нагрузок и высоковольтных нагрузок на постоянном токе.

Типовая практика применения мощных электромагнитных реле — это коммутация нагрузок на переменном токе 220 В или на постоянном токе от 5 до 24 В при токах коммутации до 10–16 А. Обычными нагрузками для контактных групп мощных реле являются нагреватели, маломощные электродвигатели (например, вентиляторы и сервоприводы), лампы накаливания, электромагниты и прочие активные, индуктивные и емкостные потребители электрической мощности в диапазоне от 1 Вт до 2–3 кВт.

Поляризованные электромагнитные реле

Разновидностью электромагнитных реле являются поляризованные электромагнитные реле. Их принципиальное отличие от нейтральных реле состоит в способности реагировать на полярность управляющего сигнала.

Самые распространенные серии электромагнитных реле управления

Схема подключения электромагнитного релеРеле промежуточное серии РПЛ . Реле предназначены для применения в качестве комплектующих изделий в стационарных установках, в основном в схемах управления электроприводами при напряжении до 440В постоянного тока и до 660 В переменного тока частотой 50 и 60 Гц. Реле пригодны для работы в системах управления с применением микропроцессорной техники при шунтировании включающей катушки ограничителем ОПН или при тиристорном управлении. При необходимости на промежуточное реле может быть установлена одна из приставок ПКЛ и ПВЛ. Номинальный ток контактов – 16А

Реле промежуточное серии РПУ-2М. Реле промежуточные РПУ-2М предназначены для работы в электрических цепях управления и промышленной автоматики переменного тока напряжением до 415В, частоты 50Гц и постоянного тока напряжением до 220В.

Реле серии РПУ-0, РПУ-2, РПУ-4. Реле изготавливаются с втягивающими катушками постоянного тока на напряжения 12, 24, 48, 60, 110, 220 В и токи 0,4 – 10 А и втягивающими катушками переменного тока – на напряжения 12, 24, 36, 110, 127, 220, 230, 240, 380 и токаи 1 – 10 А. Реле РПУ-3 с втягивающими катушками постоянного тока – на напряжения 24, 48, 60, 110 и 220 В.

Схема подключения электромагнитного релеРеле промежуточное серии РП-21 предназначены для применения в цепях управления электроприводами переменного тока напряжением до 380В и в цепях постоянного тока напряжением до 220В. Реле РП-21 комплектуются розетками под пайку, под дин. рейку или под винт.

Основные характеристики реле РП-21. Диапазон напряжений питания, В: постоянного тока – 6, 12, 24, 27, 48, 60, 110 переменного тока частоты 50 Гц – 12, 24, 36, 40, 110, 127, 220, 230, 240 переменного тока частоты 60 Гц – 12, 24, 36, 48, 110, 220, 230, 240 Номинальное напряжение цепи контактов, В: реле постоянного тока – 12. 220, реле переменного тока – 12. 380 Номинальный ток – 6,0 А Количество контактов замык. / размык. / перекл. – 0. 4 / 0. 2 / 0. 4 Механическая износостойкость – не менее 20 млн. циклов.

Большое распространение в системах автоматики станков, механизмов и машин получили электромагнитные реле постоянного тока серии РЭС-6 в качестве промежуточного реле напряждением 80 – 300 В, коммутируемый ток 0,1 – 3 А

В качестве промежуточных применяются также электромагнитные реле серий РП-250, РП-321, РП-341, РП-42 и ряд других, которые могут использоваться и как реле напряжения.

Как выбрать электромагнитное реле

Схема подключения электромагнитного релеРабочие напряжения и токи в обмотке реле должны находится в пределах допустимых значений. Уменьшение рабочего тока в обмотке приводит к снижению надежности контактирования, а увеличение к перегреву обмотки, снижению надежности реле при максимально-допустимой положительной температуре. Нежелательна даже кратковременная подача на обмотку реле повышенного рабочего напряжения, так как при этом возникают механические перенапряжения в деталях магнитопровода и контактных групп, а электрическое перенапряжение обмотки при размыкании ее цепи может вызвать пробой изоляции.

При выборе режима работы контактов реле необходимо учитывать значение и род коммутируемого тока, характер нагрузки, общее количество и частоту коммутации.

При коммутации активных и индуктивных нагрузок наиболее тяжелым для контактов является процесс размыкания цепи, так как при этом из-за образования дугового разряда происходит основной износ контактов.

Оцените статью
Добавить комментарий

Adblock
detector