Регулятор напряжения на динисторе

Регулятор напряжения на динисторе

Регулятор напряжения на динисторе

На рисунке представлена схема симисторного регулятора мощности, которую можно менять за счет изменения общего количества сетевых полупериодов, пропускаемых симистором за определенный интервал времени. На элементах микросхемы DD1.1.DD1.3 сделан генератор прямоугольных импульсов, период колебания которого около 15-25 сетевых полупериодов.

Регулятор напряжения на динисторе

Скважность импульсов регулируется резистором R3. Транзистор VT1 совместно с диодами VD5-VD8 предназначен для привязки момента включения симистора во время перехода сетевого напряжения через нуль. В основном этот транзистор открыт, соответственно, на вход DD1.4 поступает "1" и транзистор VT2 с симистором VS1 закрыты. В момент перехода через нуль транзистор VT1 закрывается и почти сразу открывается. При этом, если на выходе DD1.3 была 1, то состояние элементов DD1.1.DD1.6 не изменится, а если на выходе DD1.3 был "ноль", то элементы DD1.4.DD1.6 сгенерируют короткий импульс, который усилится транзистором VT2 и откроет симистор.

До тех пор пока на выходе генератора будет логический ноль, процесс будет идти цикличиски после каждого перехода сетевого напряжения через точку нуля.

Регулятор напряжения на динистореРегулятор напряжения на динисторе

Основа схемы зарубежный симистор mac97a8, который позваляет коммутировать большие мощности подключенные нагрузки, а для ее регулировки использовал старый советский переменный резистор, а в качестве индикации использовал обычный светодиод.

В симисторном регуляторе мощности применен принцип фазового управления. Работа схемы регулятора мощности основана на изменении момента включения симистора относительно перехода сетевого напряжения через ноль. В первоначальный момент положительного полупериода симистор находится в закрытом состояние. С возрастанием сетевого напряжения, конденсатор С1 заряжается через делитель.

Регулятор напряжения на динисторе

Возрастающее напряжения на конденсаторе сдвигается по фазе от сетевого на величину, зависящую от суммарного сопротивления обоих резисторов и емкости конденсатора. Заряд конденсатора происходит до тех пор, пока напряжение на нем не дойдет до уровня «пробоя» динистора, приблизительно 32 В.

В момент открытия динистора, откроется и симистор, через подключенную к выходу нагрузку потечет ток, зависящий от суммарного сопротивлением открытого симистора и нагрузки. Симистор будет открыт до конца полупериода. Резистором VR1 задаем напряжение открывания динистора и симистора, тем самым регулируя мощность. В момент действия отрицательного полупериода алгоритм работы схемы аналогичен.

Вариант схемы с небольшими доработками на 3,5 кВт

Схема регулятора несложная, мощность нагрузки на выходе устройства составляет 3,5 кВт. С помощью этой радиолюбительской самоделки вы можите регулировать освещение, нагревательные тэны и многое другое. Единственный существенный недостаток данной схемы, это то что подсоединить к ней индукционную нагрузку нельзя ни в коем случае, т.к симистор сгорит!

Регулятор напряжения на динисторе

Используемые в конструкции радиокомпоненты: Симистор Т1 – BTB16-600BW или аналогичный (КУ 208 ил ВТА, ВТ). Динистор Т — типа DB3 или DB4. Конденсатор 0,1мкФ керамический.

Сопротивление R2 510Ом ограничивает максимальные вольты на конденсаторе 0,1 мкФ, если поставить движок регулятора в положение 0 Ом, то сопротивление цепи составит порядка 510 Ом. Заряжается емкость, через резисторы R2 510Ом и переменное сопротивление R1 420кОм, после того, как U на конденсаторе достигнет уровня открывания динистора DB3, последний сформирует импульс, отпирающий симистор, после чего, при дальнейшем проходе синусоиды, симистор запирается. Частота открывания-закрывания Т1 зависит от уровня U на конденсаторе 0.1мкФ, которое,зависит от сопротивления переменного резистора. Т.е, прерывая ток (с большой частотой) схема, тем самым регулирует мощность на выходе.

Регулятор напряжения на динисторе

При каждой положительной полуволне входного переменного напряжения емкость С1 заряжается через цепочку резисторов R3, R4, когда напряжение на конденсаторе С1 станет равным напряжению открытия динистора VD7 произойдет его пробой и разрядка емкости через диодный мост VD1-VD4 , а также сопротивление R1 и управляющий электрод VS1 . Для открытия симистора используется электрическая цепочка из диодов VD5, VD6 конденсатора С2 и сопротивления R5.

Регулятор напряжения на динисторе

Требуется подобрать номинал резистора R2 так, чтобы при обоих полуволнах сетевого напряжения, симистор регулятора надежно срабатывал, а также требуется подобрать номиналы сопротивлений R3 и R4 так, чтобы при вращении ручки переменного сопротивления R4 напряжение на нагрузке плавно изменялось от минимальных до максимальных значений. Вместо симистора ТС 2-80 можно использовать ТС2-50 или ТС2-25, хотя будет небольшой проигрыш по допустимой мощности в нагрузке.

Регулятор напряжения на динисторе

Регулятор напряжения на динисторе

В качестве симистора был использован КУ208Г, ТС106-10-4, ТС 112-10-4 и их аналоги. В тот момент времени когда симистор закрыт, осуществляется заряд конденсатора С1 через подключенную нагрузку и резисторы R1 и R2. Скорость заряда изменяется резистором R2, резистор R1 предназначен для ограничения максимальной величины тока заряда

При достижении на обкладках конденсатора порогового значения напряжения происходит открытие ключа, конденсатор С1 быстро разряжается на управляющий электрод и перключает симистор из закрытого состояния в открытое, в открытом состоянии симистор шунтирует цепь R1, R2, С1. В момент перехода сетевого напряжения через ноль происходит закрытие симистора, затем снова заряд конденсатора C1, но уже отрицательным напряжением.

Конденсатор С1 от 0,1. 1,0 мкФ. Резистор R2 1,0. 0,1 МОм. Симистор включается положительным импульсом тока на управляющий электрод при положительном напряжении на выводе условном аноде и отрицательным импульсом тока на управляющий электрод при отрицательном напряжении условного катода. Таким образом, ключевой элемент для регулятоpa должен быть двунаправленным. Можно в качестве ключа использовать двунаправленный динистор.

Регулятор напряжения на динисторе

Диоды Д5-Д6 используются для защиты тиристора от возможного пробоя обратным напряжением. Транзистор работает в режиме лавинного пробоя. Его напряжение пробоя около 18-25 вольт. Если вы не найдете П416Б, то можно попытаться найти ему замену в справочнике по транзисторам.

Регулятор напряжения на динисторе

Импульсный трансформатор наматывается на ферритовом кольце диаметром 15 мм, марки Н2000.Тиристор можно заменить на КУ201

Регулятор напряжения на динисторе
Читать также:  Самодельная направляющая шина для дисковой пилы

Схема этого регулятора мощности похожа на вышеописанные схемы, только введена помехоподавляющая цепь С2, R3, а ыыключатель SW дает возможность разрывать цепь зарядки управляющего конденсатора, что приводит к моментальному запиранию симистора и отключению нагрузки.

Регулятор напряжения на динисторе

С1, С2 – 0,1 МКФ, R1-4k7, R2-2 мОм, R3-220 Ом, VR1-500 кОм, DB3 – динистор, BTA26-600B – симистор, 1N4148/16 В – диод, светодиод любой.

Регулятор напряжения на динисторе

Регулятор используется для регулировки мощности нагрузки в цепях до 2000 Вт, ламп накаливания, нагревательных приборов, паяльника, асинхронных двигателей, зарядного устройство для авто, и если заменить симистор на более мощный можно применить в цепи регупировки тока в сварочных трансформаторах.

Регулятор напряжения на динисторе

Регулятор напряжения на динисторе

Принцип работы этой схемы регулятора мощности заключается в том, что на нагрузку поступает полупериод сетевого напряжения через выбранное число пропущенных полупериодов.

Регулятор напряжения на динисторе

Диодный мост выпрямляет переменное напряжение. Резистор R1 и стабилитрон VD2, вместе с конденсатором фильтра образуют источник питания 10 В для питания микросхемы К561ИЕ8 и транзистора КТ315. Выпрямленные положительные полупериоды напряжения проходя через конденсатор С1 стабилизируются стабилитроном VD3 на уровне 10 В. Таким образом, на счетный вход С счетчика К561ИЕ8 следуют импульсы с частотой 100 Гц. Если переключатель SA1 подсоединен к выходу 2, то на базе транзистора будет постоянно присутствовать уровень логической единицы. Т.к импульс обнуления микросхемы очень короткий и счетчик успевает перезапуститься от того же импульса.

На выводе 3 установится уровень логической единицы. Тиристор будет открыт. На нагрузке будет выделяться вся мощность. Во всех последующих положениях SA1 на выводе 3 счетчика будет проходить один импульс через 2-9 импульсов.

Микросхема К561ИЕ8 это десятичный счетчик с позиционным дешифратором на выходе, поэтому уровень логической единицы будет периодически на всех выходах. Однако, если переключатель установлен на 5 выходе (выв.1), то счет будет происходить только до 5. При прохождении импульсом выхода 5 микросхема обнулится. Начнется счет с ноля, а на выводе 3 появится уровень логической единицы на время одного полупериода. На это время открывается транзистор и тиристор, один полупериод проходит в нагрузку. Для того чтобы было понятней привожу векторные диаграммы работы схемы.

Регулятор напряжения на динисторе

Если требуется уменьшить мощность нагрузки, можно добавить еще одну микросхему счетчика, соединив вывод 12 предыдущей микросхемы с выводом 14 последующей. Установив еще один переключатель, можно будет регулировать мощность до 99 пропущенных импульсов. Т.е. можно получить примерно сотую часть общей мощности.

Регулятор напряжения на динисторе

Микросхема КР1182ПМ1 имеет в своем внутреннем составе два тиристора и узел управления ими. Максимальное входное напряжение микросхемы КР1182ПМ1 около 270 Вольт, а максимум в нагрузке может достигать 150 Ватт без использования внешнего симистора и до 2000 Вт с использованием, а также с учетом того, что симистор будет установлен на радиаторе.

Регулятор напряжения на динисторе

Для снижения уровня внешних помех используется конденсатор С1 и дроссель L1, а емкость С4 требуется для плавного включения нагрузки. Регулировка осуществляется с помощью сопротивления R3.

Регулятор напряжения на динисторе

Подборка довольно простых схем регуляторов для паяльника упростит жизнь радиолюбителю

Регулятор напряжения на динисторе

Комбинированность заключается в совмещении удобства применения цифрового регулятора и гибкости регулировки простого.

Регулятор напряжения на динисторе

Рассмотренная схема регулятора мощности работает по принципу изменения числа периодов входного переменного напряжения, идущих на нагрузку. Это значит, что устройство нельзя использовать для настройки яркости ламп накаливания из-за заметного для глаза мигания. Схема дает возможность регулировать мощность в пределах восьми предустановленных значений.

Регулятор напряжения на динисторе

Существует огромной количество классических тиристорных и симисторных схем регуляторов, но этот регулятор выполнен на современной элементной базе и кроме того являлся фазовым, т.е. пропускает не всю полуволну сетевого напряжения, а только некоторую её часть, тем самым и осуществляется ограничение мощности, т.к открытие симистора происходит только при нужном фазовом угле.

Полупроводниковый прибор, имеющий 5 p-n переходов и способный пропускать ток в прямом и обратном направлениях, называется симистором. Из-за неспособности работы на высоких частотах переменного тока, высокой чувствительности к электромагнитным помехам и значительного тепловыделения при коммутации больших нагрузок, в настоящее время широкого применения в мощных промышленных установках они не имеют.

Сегодня схемы на симисторах можно найти во многих бытовых приборах от фена до пылесоса, ручном электроинструменте и электронагревательных устройствах – там, где требуется плавная регулировка мощности.

Регулятор напряжения на динисторе

Принцип работы

Регулятор мощности на симисторе работает подобно электронному ключу, периодически открываясь и закрываясь, с частотой, заданной схемой управления. При отпирании симистор пропускает часть полуволны сетевого напряжения, а значит потребитель получает только часть номинальной мощности.

Делаем своими руками

На сегодняшний день ассортимент симисторных регуляторов в продаже не слишком велик. И, хотя цены на такие устройства невелики, зачастую они не отвечают требованиям потребителя. По этой причине рассмотрим несколько основных схем регуляторов, их назначение и используемую элементную базу.

Схема прибора

Простейший вариант схемы, рассчитанный для работы на любую нагрузку. Используются традиционные электронные компоненты, принцип управления фазово-импульсный.

Основные компоненты:

  • симистор VD4, 10 А, 400 В;
  • динистор VD3, порог открывания 32 В;
  • потенциометр R2.

Ток, протекающий через потенциометр R2 и сопротивление R3, каждой полуволной заряжает конденсатор С1. Когда на обкладках конденсатора напряжение достигнет 32 В, произойдёт открытие динистора VD3 и С1 начнёт разряжаться через R4 и VD3 на управляющий вывод симистора VD4, который откроется для прохождения тока на нагрузку.

Длительность открытия регулируется подбором порогового напряжения VD3 (величина постоянная) и сопротивлением R2. Мощность в нагрузке прямо пропорциональна величине сопротивления потенциометра R2.

Дополнительная цепь из диодов VD1 и VD2 и сопротивления R1 является необязательной и служит для обеспечения плавности и точности регулировки выходной мощности. Ограничение тока, протекающего через VD3, выполняет резистор R4. Этим достигается необходимая для открытия VD4 длительность импульса. Предохранитель Пр.1 защищает схему от токов короткого замыкания.

Подбирать симисторы следует по величине нагрузке, исходя из расчёта 1 А = 200 Вт.

Используемые элементы:

  • Динистор DB3;
  • Симистор ТС106-10-4, ВТ136-600 или другие, требуемого номинала по току 4-12А.
  • Диоды VD1, VD2 типа 1N4007;
  • Сопротивления R1100 кОм, R3 1 кОм, R4 270 Ом, R5 1,6 кОм, потенциометр R2 100 кОм;
  • Конденсатор С1 0,47 мкФ (рабочее напряжение от 250 В).

Отметим, что схема является наиболее распространённой, с небольшими вариациями. Например, динистор может быть заменён на диодный мост или может быть установлена помехоподавляющая RC цепочка параллельно симистору.

Более современной является схема с управлением симистора от микроконтроллера – PIC, AVR или другие. Такая схема обеспечивает более точную регулировку напряжения и тока в цепи нагрузки, но является и более сложной в реализации.

Регулятор напряжения на динистореСхема симисторного регулятора мощности

Сборка

Сборку регулятора мощности необходимо производить в следующей последовательности:

  1. Определить параметры прибора, на который будет работать разрабатываемое устройство. К параметрам относятся: количество фаз (1 или 3), необходимость точной регулировки выходной мощности, входное напряжение в вольтах и номинальный ток в амперах.
  2. Выбрать тип устройства (аналоговый или цифровой), произвести подбор элементов по мощности нагрузки. Можно проверить своё решение в одной из программ для моделирования электрических цепей – Electronics Workbench, CircuitMaker или их онлайн аналогах EasyEDA, CircuitSims или любой другой на ваш выбор.
  3. Рассчитать тепловыделение по следующей формуле: падение напряжения на симисторе (около 2 В) умножить на номинальный ток в амперах. Точные значения падения напряжения в открытом состоянии и номинальный пропускаемый ток указаны в характеристиках симистора. Получаем рассеиваемую мощность в ваттах. Подобрать по рассчитанной мощности радиатор.
  4. Закупить необходимые электронные компоненты, радиатор и печатную плату.
  5. Произвести разводку контактных дорожек на плате и подготовить площадки для установки элементов. Предусмотреть крепление на плате для симистора и радиатора.
  6. Установить элементы на плату при помощи пайки. Если нет возможности подготовить печатную плату, то можно использовать для соединения компонентов навесной монтаж, используя короткие провода. При сборке особое внимание уделить полярности подключения диодов и симистора. Если на них нет маркировки выводов, то прозвонить их при помощи цифрового мультиметра или «аркашки».
  7. Проверить собранную схему мультиметром в режиме сопротивления. Полученное изделие должно соответствовать изначальному проекту.
  8. Надёжно закрепить симистор на радиатор. Между симистором и радиатором не забыть проложить изолирующую теплопередающую прокладку. Скрепляющий винт надёжно заизолировать.
  9. Поместить собранную схему в пластиковый корпус.
  10. Вспомнить о том, что на выводах элементов присутствует опасное напряжение.
  11. Выкрутить потенциометр на минимум и произвести пробное включение. Измерить напряжение мультиметром на выходе регулятора. Плавно поворачивая ручку потенциометра следить за изменением напряжения на выходе.
  12. Если результат устраивает, то можно подключать нагрузку к выходу регулятора. В противном случае необходимо произвести регулировки мощности.

Регулятор напряжения на динистореСимисторный радиатор мощности

Регулировка мощности

За регулировку мощности отвечает потенциометр, через который заряжается конденсатор и разрядная цепь конденсатора. При неудовлетворительных параметрах выходной мощности следует подбирать номинал сопротивления в разрядной цепи и, при малом диапазоне регулировки мощности, номинал потенциометра.

Регулятор напряжения на динистореРегуляторы мощности получили широкое применение в повседневной жизни. Их использование очень разнообразное: от регулирования величины яркости освещения до управления оборотами различных двигателей, с их помощью можно выставлять требуемую температуру различных нагревательных приборов. Таким образом, регулировать мощность можно для нагрузки любого вида как реактивной, так и активной.

Регулятор мощности представляет собой определённую электронную схему, с помощью которой можно контролировать значение энергии, подводимой к нагрузке.

Виды и характеристики регуляторов

Устройства, предназначенные для управления значениями мощности, разделяют по способу регулировки:

  • тРегулятор напряжения на динистореиристорные;
  • симисторные;
  • фазовые (диммер).

По виду выходного сигнала:

  • стабилизированные;
  • не стабилизированные.

Регулировка осуществляется при питании как от постоянного, так и переменного напряжения. Управлять можно величиной напряжения или тока.

По своему виду расположения регуляторы могут быть портативными и стационарными, устанавливаться в любом положении: вертикальном, потолочном, горизонтальном, крепиться на специальную дин рейку или встраиваться. Конструктивно выполняются как на специализированных печатных платах, так и с помощью навесного монтажа.

Основными характеристиками, на которые следует обращать внимание, являются следующие параметры:

  • плавность регулировки;
  • рабочая и пиковая подводимая мощность;
  • диапазон входного рабочего напряжения;
  • диапазон задания напряжения, поступающего на нагрузку;
  • условия эксплуатации.

Тиристорный регулятор мощности

Схема и принцип работы такого устройства не отличается особой сложностью. Основное назначение тиристорного преобразователя — управление устройствами с малой мощностью, но в редких случаях и большой. В основе работы лежит использование задержки включения тиристорного ключа на полупериоде переменного тока. Главным компонентом такой схемы является тиристор, работающий в режиме ключа. При появлении разности потенциалов на управляющем контакте он открывается. Чем больше задержка при включении, тем меньше мощности поступает в нагрузку.

Регулятор напряжения на динистореПростейшая схема, кроме тиристора, содержит два биполярных транзистора, два резистора, задающих рабочую точку, и конденсатор. Транзисторы, работая в режиме ключа, формируют управляющий сигнал. Как только разность потенциалов на конденсаторе достигает значения, равному рабочему, то транзисторы открываются, и подаётся сигнал на управляющий контакт. Конденсатор начинает разряжаться до следующего полупериода.

Преимущества этого типа регулятора в том, что он не требует настройки, а недостаток в чрезмерном нагреве. Для борьбы с перегревом используется как активная, так и пассивная система охлаждения.

Применяется тиристорный регулятор для управления мощностью бытовых (паяльники, электронагреватели, лампы накаливания ) и производственных приборов (плавный запуск мощных силовых установок). Агрегат может быть однофазным и трёхфазным.

Изготовление устройства самостоятельно

Если есть необходимость использовать тиристорный регулятор мощности, можно своими руками сделать прибор неплохого качества. Для этого нужно в специализированной точке продаж приобрести набор, содержащий подробную схему с описанием принципа сборки и работы. Или можно использовать любую схему из интернета или литературы и спаять устройство самостоятельно.

В качестве тиристоров можно использовать любой тип, например, отечественный КУ202Н или импортный bt151, в зависимости от необходимой мощности. Кроме тиристора, значение последней будет также зависеть от параметров диодного моста, применяемого в схеме. Регулировка мощности осуществляется с помощью переменного резистора. Если нет возможности или желания изготовить печатную плату, можно собрать прибор с помощью навесного монтажа. При этом необходимо тщательно заизолировать все места соединений во избежание короткого замыкания.

Регулятор напряжения на динисторе

Симисторный регулятор мощности

Симистор является полупроводниковым элементом, предназначенным для использования в цепях переменного тока. Отличительной чертой прибора является то, что его выводы не имеют разделения на анод и катод. В отличие от тиристора, проводящего ток только в одну сторону, симистор проводит ток в обоих направлениях. Именно из-за этой способности симистор и применяется в сетях переменного тока.

Регулятор напряжения на динистореМощность регулируется в этом случае путём изменения количества полупериодов напряжения, которые действуют на нагрузку. Главное отличие от тиристорных схем в том, что здесь не используется выпрямительное устройство. Работа схемы основана на принципе фазного управления, то есть на изменении момента открытия симистора относительно перехода сетевого напряжения через ноль.

Этот прибор используется для управления нагревательными элементами, лампами накаливания, оборотами двигателя. Сигнал на выходе устройства имеет пилообразную форму с управляемой длительностью импульса.

Самостоятельное изготовление прибора даже проще, чем изготовление тиристорного регулятора. Широкую популярность получили симисторы средней мощности типа BT137−600E или MAC97A6. Схема регулятора мощности на симисторе с использованием этих элементов отличается простотой изготовления.

Фазовый регулятор

Фазовое регулирование используется для плавного запуска двигателей различного типа или управления током при заряде аккумулятора. Один из видов таких приборов является диммер.

Основа работы лежит в изменении угла открытия ключевого тиристора, в результате чего на нагрузку поступают сигналы с отрезанной начальной частью полупериода, снижается действующая величина напряжения.

Достоинство такого типа регулирования — низкая стоимость ввиду применения недорогих радиодеталей. А вот основной недостаток — значимый коэффициент пульсаций и низкий коэффициент мощности выходного сигнала.

Нередко в конструкции такого вида регуляторов используются микросхемы низкочастотного типа. Благодаря этому регулятор способен быстро изменять мощность. Фазовые регуляторы редко стабилизируют с помощью стабилитронов, обычно роль стабилизатора выполняют попарно работающие тиристоры.

Регулятор мощности для паяльника своими руками

Рассмотрим пример изготовления регулятора тока своими руками. Например, будем регулировать мощность паяльника. Регулирование в таком устройстве позволяет не перегревать место пайки и способно защищать жало паяльника от выгорания.

Такого типа устройства выпускаются достаточно давно. Одним из видов его был отечественный прибор, носящий название «Добавочное устройство для электропаяльника типа П223». Он позволял использовать низковольтный паяльник напряжением 36 вольт, питаемый от сети 220 В.

Регулятор на симисторе КУ208Г

Схема прибора довольно интересная и простая в реализации. Отличительной её особенностью является использование неоновой лампочки.

Конденсатор, величиной порядка 0,1 мкФ, предназначен для генерации пилообразного импульса и защиты схемы управления от помех. Резисторы применяются для ограничения тока, а с помощью переменного резистора ток регулируется, его величина составляет около 220 кОм. Неоновая лампочка позволяет выполнять линейное управление и одновременно является индикатором. По интенсивности её яркости можно контролировать регулировку.

Недостатком такой схемы будет слабая информированность о мощности паяльника. Для наглядного отображения значений выставленного значения, при достаточном уровне радиоподготовки, можно применить микроконтроллер, например, pic16f628a. На нем также возможно будет выполнить электронную регулировку мощности, отказавшись от переменного резистора.

Регулировка на интегральном стабилизаторе

Ещё одним способом управления мощностью является применение интегральных стабилизаторов. Используя такое устройство, очень легко изготовить диммер для 12 вольтового регулятора напряжения. Такое устройство простое в сборке и обладает встроенной защитой, может использоваться как для подключения паяльника на 12 В, так и светодиодной ленты. Обычно переменный резистор подключается к входу управляющего электрода микросхемы. Недостаток — сильный нагрев стабилизирующей микросхемы.

Переменное напряжение сети 220 В понижается через трансформатор до 16−18 вольт. Далее через диодный мост и сглаживающий конденсатор выпрямленное значение поступает на вход линейного стабилизатора. С помощью переменного резистора посредством изменения рабочей характеристики микросхемы выставляется требуемое напряжение на выходе. Такое напряжение будет стабилизированным и для нашего случая составит 12 вольт.

При самостоятельном изготовлении приборов соблюдайте осторожность и помните про технику безопасности при работе с сетью переменного тока 220 В. Как правило, верно выполненный регулятор из исправных деталей не требует настройки и сразу начинает работать.

Регулятор напряжения на динисторе
Оцените статью
Добавить комментарий

Adblock
detector