Как на плазме резать толстый металл

Рассмотрены возможности резки толстого металла в современных условиях, а именно: кислородная резка, дуговая резка, гильотинная резка и резка кумулятивной струей. Отражены особенности резки толстых металлов, физические механизмы процесса резки толстых металлов

Кислородная резка

Кислородная резка во многих случаях механтзируется с помощью специальных

переносных приборов и газорезательных машин. При газокислородной резке используют не только ацетилен, но и другие горючие газы, например природный и нефтяной газы, водород, а также жидкое топливо – керосин и бензин.

Газокислородная резка с качеством и производительностью превышает много других способов резки, поэтому его широко применяют.

Важным является также способ резки кислородным копьем, который применяют при пропиливании металла в металлургических печах, создании отверстий в бетонах и др. Резку кислородным копьем выполняют с помощью трубки из малоуглеродистой стали, в которую к месту резки подают кислород. Сначала место резки и конец трубки подогревают пламенем газосварочного паяльника, а затем в трубку подают кислород. Когда конец трубки загорится, его прижимают к месту резки и процесс резки осуществляется за счет сгорания металла трубки и изделия в струе кислорода.

Дуговая резка

Для разрезания стали толщиной 6…50 мм используют электроды диаметром 4.. 5 мм и силу тока 300…400 А. Покрытие этих электродов изготавливают из компонентов,

богатых на кислород (магниевая руда, оксиды железа), а также из компонентов, которые способствуют активному газообразованию (древесная мука, целлюлоза электродная и др.)

Универсальные инжекторные резаки

Одним из современных способов резки толстых листов металла является использование инжекторной резки. Инжекторный резак состоит из ствола и наконечника. Инжекторное устройство резака является такимже как и устройство горелки.

Мундштуки должны быть особо ответственными деталями резаков. На сегодня все мундштуки изготавливают из бронзы БрХ0,5.

Мундштуки выпускают с кольцевым пламенем (рис. а) и многосопловые (рис. б).

Как на плазме резать толстый металл

а — щелевые; б — многосопловые: 1 — подогревающем пламени, 2 — режущий кислород чистый

Требования к резакам

Согласно ГОСТ 5191-79Е, резаки, которые предназначены для разделительной резки кислородом (толщиной металла, подвергающаяся разрезанию), подразделяются на следующие мощности:

  • малой мощности могут резать металл 5 мм и более до 100 мм;
  • средней мощности могут резать металл 8 мм и более до 200 мм;
  • большой мощности могут резать металл 10 мм и более до 300 мм.

Резка металла 3 мм до 100 мм толщиной возможна также с помощью вставных резаков. Следует помнить, что вставных резаков большой мощности не существует.

Как на плазме резать толстый металл

Каждый резак идет с мундштуками c размерами 0; 1; 2; 3; 4; 5; 6.

В зависимости от типа и модели резака, сменные мундштуки разделяют:

  • на составляющие (внешние и внутренние);
  • моноблочные (неразборные).

Длина резаков согласно ГОСТ должна быть не более 700 мм.

Гильотинная резка

Гильотинная резка – это прямолинейное резания листового металла. Металл режется противоположными лезвиями двух ножей.

Во время резки подвижный нож движется по отношению к неподвижному с зазором, определяемым условиями резания.

Подвижный нож может быть выставлен под углом по отношению к недвижимому для того, чтобы резание происходило последовательно, с одной стороны к другой. Этот угол называется углом между ножами, уменьшает усилие резания, но увеличивает ход подвижного ножа.

Гильотина — это устройство которое состоит из станины с рабочим столом, системы прижима листа, верхнего и нижнего ножей и заднего упора. Задний упор обеспечивает нужный размер детали, которая отрезается.

Как на плазме резать толстый металл

Задний угол верхнего ножа незначительно влияет на усилие резки. При использовании 2-х лезвий с 4-мя режущими кромками нужны более повышенные усилия резания, чем тогда, когда верхнее лезвие установлено с небольшим задним углом (как правило, не больше 3°).

Угол между лезвиями существенно влияет на усилие резания и влияет на дефекты. Данный угол — не должен быть больше 3°.

Зазор между ножами — это перпендикулярная линия между ними. Чистота реза зависит от толщины листа. Если зазор слишком мал, наблюдается повышенный износ ножей, что предусматривает расходы на заточку инструмента. Если зазор слишком большой – металл сминается между двумя ножами. В результате мы получим конусновидный срез и пластические деформации в материале.

Как на плазме резать толстый металл

Общими недостатками гильотинной резки является: скручивание, саблевидность, сгиб и не прямолинейность кромки.

Гильотинные ножницы для резки толстого металла применяется для листов толщиной до 5 мм. Край получается ровным, но важно поддерживать зазор между лезвиями 0,03 мм.

Как на плазме резать толстый металл

Резкая кумулятивной струей

Один из основных методов резки металлов взрывом основывается на применении явления образования кумулятивных струй. Небольшие заряды используют для пробивания отверстий на большой глубине в трубах при добыче нефти и газа. Кумулятивные заряды также используют для разрушения крупногабаритных железобетонных массивов и каменных монолитов.

Как на плазме резать толстый металл

а — схема кумулятивного заряда;

Читать также:  Реостат как обозначается на схеме

б — схема формирования кумулятивной струи;

в — схема пробития преграды кумулятивной струей

Резка толстых металлов взрывом с успехом используют для обработки техники, отслужившая, крупногабаритных объектов, мостов. Причем в последнем случае эти операции можно проводить под водой. Данная технология, как и другие виды взрывной обработки, не требует дорогостоящего оборудования, а стоимость взрывчатых веществ относительно невелика.

Особенности резки толстых металлов

На обрабатываемость резанием толстых металлов влияют технологические условия его обработки. В первую очередь следует обратить внимание на жесткость технологической системы резания. Если жесткость системы снижена возникают вибрации, в результате действия которых, фактическая скорость резания возрастает за счет наложения скорости колебательного процесса режущей кромки инструмента. В зависимости от жесткости системы резки фактическая скорость может возрастать на 15…40%, заметно снижая устойчивость инструмента в процессе резания труднообрабатываемых металлов, которые очень чувствительны к изменению скорости резки. К возможностям повышения жесткости технологической системы можно отнести изменения схемы крепления детали, уменьшение вылета резца, увеличение жесткости инструмента, применения устройств гашения вибраций и тому подобное. Для толстых и труднообрабатываемых металлов необходимо искать такие сочетания режимных и других технологических факторов, которые способствовали бы улучшению пластичности обрабатываемого материала в сочетании с его нагревом в зоне резания.

Другое направление — дополнительная внешняя стимуляция (наложения ультразвуковых колебаний, введение электрического тока и тому подобное).

Физический механизм процесса толстых резания металлов, который основан на дислокационно-энергетических закономерностях пластического деформирования и разрушения, дает возможность объяснить природу некоторых известных методов улучшения обрабатываемости, например, нагрев обрабатываемого материала в процессе резания. Этот метод, как правило, приводит к уменьшению твердость труднообрабатываемых материалов. Процесс деформирования также облегчается счет роста роли термической активации преодоления дислокациями барьеров, развитие диффузионных процессов.

Как альтернатива значительного количества критериев можно предложить один общий или интегральный показатель обрабатываемости и оптимальности резки в виде удельного энергоемкости процесса, основанный на определении затраченной энергии на снятие единицы объема припуска. Применение энергетического критерия целесообразно реализовывать для практических задач оптимального назначения технологических условий резания деталей.

Энергия на пластическое деформирование зоны резания распределяется неравномерно и зависит от режимов резания и геометрии инструмента. Наибольшие затраты приходятся как правило на деформацию металла выше поверхности среза (95% и более работы пластического деформирования).

Отсюда можно сделать вывод: для улучшения обрабатываемости достаточно уменьшить твердость слоя металла, который снимается.

Улучшение обрабатываемости металлов и сплавов до или во время обработки является важным эффективным средством управления процессом резания, а также средством достижения минимизации энергозатрат.

Управляя обрабатываемостью, можно назначать такие условия резания, которые будут оптимальные со всех точек зрения: сопротивление стружкообразованию, стойкость инструмента, качество обработки.

В зависимости от толщины металла и формы обработки, кромки готовят обрезкой на ножницах, механической строгальным или газовой резкой. Наиболее распространено механизированная газовая резка (в заводских условиях) и ручное газовой резки (в условиях монтажа). После газовой резки поверхность заготовки требует механической обработки до удаления следов резки. А для некоторых сталей (мартенситно-ферритного класса) после газовой резки необходимо механическим удалить слой металла толщиной как минимум 1-2 мм, поэтому перед резанием необходимо предусмотреть припуск. Для обработки высоколегированных сталей применяют пламенную и воздушно-дуговую резку.

  • Существует множество видов разделки кромок:
  • Стыковое соединение без разработки кромок;
  • Стыковое соединение с двухсторонней симметричной обработкой кромки или соединение с К-образной разделкой;
  • Стыковое соединение с односторонней разделкой одной кромки;
  • Стыковое соединение с односторонней симметричным разделкой двух кромок или соединения с V-образным разделкой кромок;
  • Стыковое соединение с двусторонним симметричным обработкой двух кромок или соединения с Х-образным разделкой кромок;
  • Стыковое соединение с односторонним симметричной разделкой двух кромок под разными углами. Как правило, применяется при сварке трубопроводов с толщиной стенки от 10 мм и выше.

Для изготовления деталей особо ответственных конструкций с кромками определенной конфигурации применяют токарные станки, труборезы и другое механическое оборудование. Также можно воспользоваться ручными механическими фрезами и абразивными машинками, если конструкция не является особенно ответственным или ее габариты позволяют прибегнуть к обработке такого вида.

Для получения заготовки, готовой к сборке, необходимо выполнить ее очистки для устранения неровностей, образовавшихся в процессе проката, и транспортировки.

Зачистку выполняют до сборки узла механически или химически. Ниже показаны участки поверхности деталей, требующих очистки:

Во время проведения этого вида огневых работ могут наблюдаться хлопки и обратные удары пламени, что могут привести к разрыву шланга и возникновения пожара.

Обратные удары возникают при условиях:

  • перегрева мундштука;
  • попадание горючего в кислородные шланги;
  • если скорость истечения горючей смеси из мундштука становится меньше скорости горения;
  • ослабление накидной гайки мундштука или камеры смешения.

Воспламенение и взрыв кислородного шланга в случае обратного удара происходит, если в кислородную трубку и шланг попадает жидкое топливо.

При изготовлении металлоконструкций из цветных металлов возникает необходимость их резки. Если выполнение прямолинейных и некоторых криволинейных срезов может быть достигнуто механическими методами в холодном состоянии и не вызывает трудностей, то резка металла большой толщины, изготовление фасонных деталей, отверстий, поверхностной обработки всегда связано с использованием тепловых методов резки.

Читать также:  Сталь у13а для ножа

Плазменная резка сопровождается сильным шумом, который в сочетании с ультразвуковым эффектом является опасным для обслуживающего персонала.

Рекомендации по подбору параметров резки

Кислородная резка

Кислородная резка основана на сгорании металла в струе технически чистого кислорода. Металл при резке нагревают пламенем, которое образуется при сгорании какого-либо горючего газа в кислороде. Кислород, сжигающий нагретый металл, называют режущим. В процессе резки струю режущего кислорода подают к месту реза отдельно от кислорода, идущего на образование горючей смеси для подогрева металла. Процесс сгорания разрезаемого металла распространяется на всю толщину, образующиеся окислы выдуваются из места реза струёй режущего кислорода.

Металл, подвергаемый резке кислородом, должен удовлетворять следующим требованиям: температура воспламенения металла в кислороде должна быть ниже температуры его плавления; окислы металла должны иметь температуру плавления ниже, чем температура плавления самого металла, и обладать хорошей жидкотекучестью; металл не должен иметь высокой теплопроводности. Хорошо поддаются резке низкоуглеродистые стали.

Для кислородной резки пригодны горючие газы и пары горючих жидкостей, дающие температуру пламени при сгорании в смеси с кислородом не менее 1800 гр. Цельсия. Особенно важную роль при резке имеет чистота кислорода. Для резки необходимо применять кислород с чистотой 98,5-99,5 %. С понижением чистоты кислорода очень сильно снижается производительность резки и увеличивается расход кислорода. Так при снижении чистоты с 99,5 до 97,5 % (т.е. на 2 %) – производительность снижается на 31 %, а расход кислорода увеличивается на 68,1 %.

Технология кислородной резки. При разделительной резке поверхность разрезаемого металла должна быть очищена от ржавчины, окалины, масла и других загрязнений. Разделительную резку обычно начинают с края листа. Вначале металл разогревают подогревающим пламенем, а затем пускают режущую струю кислорода и равномерно передвигают резак по контуру реза. От поверхности металла резак должен находиться на таком расстоянии, чтобы металл нагревался восстановительной зоной пламени, отстоящей от ядра на 1,5-2 мм, т.е. наиболее высокотемпературной точкой пламени подогрева. Для резки тонких листов (толщиной не более 8-10 мм) применяют пакетную резку. При этом листы плотно укладывают один на другой и сжимают струбцинами, однако, значительные воздушные зазоры между листами в пакете ухудшают резку.

На машинах МТР "Кристалл" применяется резак "Эффект-М". Особенность резака – наличие штуцера для сжатого воздуха, который, пройдя через внутреннюю полость кожуха, истекает через кольцевой зазор над мундштуком и создает колоколообразную завесу, что локализует распространение продуктов сгорания и защищает элементы конструкции машины от перегрева.

Параметры режимов резки низкоуглеродистой стали приведены ниже в таблице 1:

ТолщинаСоплоГильзаКамераДавлениеСкоростьРасходРасход2ШиринаРасстояние
мммПамм/минм.куб./часм.куб./час
12345678910
5011ПБ0,36502,50,534
1020,45503,750,523,35
200,454755,250,553,5
3030,538070,5846
400,5534080,65
500,632090,65
600,65300100,7
8040,7275120,75
1000,75225140,855,58
16050,8170180,95610
20060,85150221,17,512
3000,990251,29

1. Толщина разрезаемого металла
5. Давление кислорода
6. Скорость резки
7. Расход кислорода
8. Расход пропана
9. Ширина реза
10. Расстояние до листа

Воздушно-плазменная резка

Процесс плазменной резки основан на использовании воздушно-плазменной дуги постоянного тока прямого действия (электрод-катод, разрезаемый металл – анод). Сущность процесса заключается в местном расплавлении и выдувании расплавленного металла с образованием полости реза при перемещении плазменного резака относительно разрезаемого металла.

Для возбуждения рабочей дуги (электрод – разрезаемый металл), с помощью осциллятора зажигается вспомогательная дуга между электродом и соплом – так называемая дежурная дуга, которая выдувается из сопла пусковым воздухом в виде факела длиной 20-40 мм. Ток дежурной дуги 25 или 40-60 А, в зависимости от источника плазменной дуги. При касании факела дежурной дуги металла возникает режущая дуга – рабочая, и включается повышенный расход воздуха; дежурная дуга при этом автоматически отключается.

Применение способа воздушно-плазменной резки, при котором в качестве плазмообразующего газа используется сжатый воздух, открывает широкие возможности при раскрое низкоуглеродистых и легированных сталей, а также цветных металлов и их сплавов

Преимущества воздушно-плазменной резки по сравнению с механизированной кислородной и плазменной резкой в инертных газах следующие: простота процесса резки; применение недорогого плазмообразующего газа – воздуха; высокая чистота реза (при обработке углеродистых и низколегированных сталей); пониженная степень деформации; более устойчивый процесс, чем резка в водородосодержащих смесях.

Как на плазме резать толстый металл
Рис. 1 Схема подключения плазмотрона к аппарату.

Как на плазме резать толстый металл
Рис. 2 Фазы образования рабочей дуги
а – зарождение дежурной дуги; б – выдувание дежурной дуги из сопла до касания с поверхностью разрезаемого листа;
в – появление рабочей (режущей) дуги и проникновение через рез металла.

Технология воздушно-плазменной резки. Для обеспечения нормального процесса необходим рациональный выбор параметров режима. Параметрами режима являются: диаметр сопла, сила тока, напряжение дуги, скорость резки, расстояние между торцом сопла и изделием и расход воздуха. Форма и размеры соплового канала обуславливают свойства и параметры дуги. С уменьшением диаметра и увеличением длины канала возрастают скорость потока плазмы, концентрация энергии в дуге, её напряжение и режущая способность. Срок службы сопла и катода зависят от интенсивности их охлаждения (водой или воздухом), рациональных энергетических, технологических параметров и величины расхода воздуха.

Читать также:  Как найти удельный вес в процентах формула

При воздушно-плазменной резке сталей диапазон разрезаемых толщин может быть разделён на два – до 50 мм и выше. В первом диапазоне, когда необходима надёжность процесса при небольших скоростях резки, рекомендуемый ток 200-250 А. Увеличение силы тока до 300 А и выше приводит к возрастанию скорости резки в 1,5-2 раза. Повышение силы тока до 400 А не даёт существенного прироста скоростей резки металла толщиной до 50 мм. При резке металла толщиной более 50 мм следует применять силу тока от 400 А и выше. С увеличением толщины разрезаемого металла скорость резки быстро падает. Максимальные скорости резки и сила тока для различных материалов и толщины, выполненные на 400 амперной установке приведены в таблице ниже.

Скорость воздушно-плазменной резки в зависимости от толщины металла: таблица 2

Разрезаемый материалСила тока АМаксимальная скорость резки (м/мм) металла в зависимости от его толщины, мм
10203040506080
Сталь2003,61,610,50,40,20,1
300631,80,90,60,40,2
40073,22,11,20,80,70,4
Медь2001,20,50,30,1
30031,50,70,50,3
4004,6210,70,40,2
Алюминий2004,521,20,80,5
3007,53,82,61,81,20,80,4
40010,553,221,410,6

Режимы. таблица 3

Разрезаемый материалТолщина, ммДиаметр сопла, ммСила тока, АРасход воздуха, л/минНапряжение, ВСкорость резки, м/минШирина реза (средняя), мм
Низкоуглеродистая сталь1 – 30,830101303 – 51 – 1,5
3 – 5150121102 – 31,6 – 1,8
5 – 71,475 – 100151,5 – 21,8 – 2
7 – 10101201 – 1,52 – 2,5
6 – 15330040 – 60160 – 1805 – 2,53 – 3,5
15 – 252,5 – 1,53,5 – 4
25 – 401,5 – 0,84 – 4,5
40 – 600,8 – 0,34,5 – 5,5
Сталь 12Х18Н10Т5 – 15250 – 300140 – 1605,5 – 2,63
10 – 30160 – 1802,2 – 14
31 – 50170 – 1901 – 0,35
Медь10300160 – 1803
201,53,5
300,74
400,54,5
500,35,5
603,54000,46,5
Алюминий5 – 152120 – 20070170 – 1802 – 13
30 – 503280 – 30040 – 50170 – 1901,2 – 0,67

Режимы воздушно-плазменной резки металлов. таблица 4

Разрезаемый материалТолщина, ммДиаметр сопла, ммСила тока, АСкорость резки, м/минШирина реза (средняя), мм
Сталь1 – 51,125 – 401,5 – 41,5 – 2,5
3 – 101,350 – 601,5 – 31,8 – 3
7 – 121,670 – 801,5 – 21,8 – 2
8 – 251,885 – 1001 – 1,52 – 2,5
12 – 402110 – 1255 – 2,53 – 3,5
Алюминий5 – 151,3602 -13
30 – 501,81001,2 – 0,67

Как на плазме резать толстый металл
Рис. 3 Области оптимальных режимов резки металлов для плазмотрона с воздушным охлаждением (ток 40А и 60А)

Как на плазме резать толстый металл
Рис. 4 Области оптимальных режимов для плазмотрона с воздушным охлаждением (ток 90А).

Как на плазме резать толстый металл
Рис. 5 Зависимость выбора диаметра сопла от тока плазмы.

Как на плазме резать толстый металл
Рис. 6 Рекомендуемые токи для пробивки отверстия.

Скорость воздушно-плазменной резки, по сравнению с газокислородной, возрастает в 2-3 раза (см. Рис. 7).

Как на плазме резать толстый металл
Рис. 7 Скорость резки углеродистой стали в зависимости от толщины металла и мощности дуги.
Пологая нижняя линия – газокислородная резка.

При воздушно-плазменной резке меди рекомендуется применять силу тока 400 А и выше. Замечено, что при резке меди с использованием воздуха во всём диапазоне толщины и токов образуется легко удаляемый грат.

Хорошего качества реза при резке алюминия, с использованием воздуха в качестве плазмообразующего газа, удаётся достигнуть лишь для небольших толщин (до 30 мм) на токах 200 А. Удаление грата с листов большой толщины затруднительно. Воздушно-плазменная резка алюминия может быть рекомендована лишь как разделительная при заготовке деталей, требующих последующей механической обработки. Припуск на обработку допускается не менее 3 мм.

Рекомендованные сообщения

Создайте аккаунт или войдите в него для комментирования

Вы должны быть пользователем, чтобы оставить комментарий

Создать аккаунт

Зарегистрируйтесь для получения аккаунта. Это просто!

Войти

Уже зарегистрированы? Войдите здесь.

Сейчас на странице 0 пользователей

Нет пользователей, просматривающих эту страницу.

Оцените статью
Добавить комментарий

Adblock
detector