Графит температура плавления и кипения

Содержание
  1. Содержание
  2. История [ править | править код ]
  3. Физические свойства [ править | править код ]
  4. Химические свойства [ править | править код ]
  5. Структура [ править | править код ]
  6. Условия нахождения в природе [ править | править код ]
  7. Искусственный синтез [ править | править код ]
  8. Переработка [ править | править код ]
  9. Переработка графита в терморасширенный графит [ править | править код ]
  10. Переработка графита для получения различных марок искусственного графита [ править | править код ]
  11. Переработка графита для получения композиционных материалов [ править | править код ]
  12. Графит как золотосодержащее сырьё [ править | править код ]
  13. Применение [ править | править код ]
  14. Свойства и разновидности графита.
  15. Плотнокристаллический графит.
  16. Чешуйчатый графит.
  17. Скрытокристаллический или аморфный графит.
  18. Требование промышленности к качеству товарного графита
  19. Руды чешуйчатых графитов.
  20. Руды плотнокристаллических графитов.
  21. Метаморфизованные угли.

Описание и свойства графита

Графит – это природный элемент, легко раскалываемый минерал, одна из модификаций углерода. Графит – материал очень мягкий, легко поддающийся механической обработке, обладает металлическим блеском. Графитовая формула – С (углерод).

Графит температура плавления и кипения

Электропроводность графита, фото которого можно посмотреть выше, превышает ртутную электропроводимость в 2,5 раза. Удельное сопротивление электротока с температурой в 0 градусов находится в границах 0,390-0,602 Ом, а его самое низкое значение для различных видов данного элемента одно и то же – 0,0075 Ом.

Элемент отличается повышенной теплопроводимостью, коэффициент которой в 5 раз выше, чем имеет кирпич (0,041). Графитные медные цепочки отличаются более низкой теплопроводностью. Пределы температуры плавления – 3845-3890 С, кипение начинается при 4200 С. Во время сжигания элемента выделяется 7832 ккал тепла. Графит является диамагнитным.

Его основные химические свойства – инертность по отношению к жидкостям, газам и твёрдым веществам, способность растворяться в расплавленных металлах, с точкой плавления превышающей его собственную. На высокой температуре может взаимодействовать с другими элементами.

Не эластичен, но в то же время изгибается и режется. Благодаря жирности и пластичности имеет широкое применение в промышленном производстве. Жирность также позволяет применять его как смазочный материал. Плотность графита 2,23 г/ см3.

Графит температура плавления и кипения

Графит отличается слоистой структурой, имеющей свои особенности. Атомы углерода кристаллической решётки графита представляют собой сотовые ячейки: шестиугольники, расположенные рядами. В каждом ряду атомы плотно связаны друг с другом, а ряды между собой имеют слабую связь. Поэтому графит легко сломать даже если только слабо надавить.

Твёрдость по шкале Мооса приравнивается к единице, в то время как у алмаза – десять, несмотря на тот факт, что алмаз и графит – это углеродовые подвиды. Всё дело в кристаллической решётке. У алмаза один атом углерода связан с четырьмя лежащими рядом. На основе исследований учёные доказали, что кристаллическая решётка графита при температуре выше 1500 С может преобразоваться в решётку алмаза.

В процессе переработки как физические, так и химические свойства графита меняются, поэтому его классифицировали на марки, которые имеют соответствующие различия. В промышленности отдельная марка графита используется для определённого вида продукции.

Графит температура плавления и кипения

Графит подразделяется на естественный (природный) и искусственный. При его производстве учитывают свойства в зависимости от назначения продукции. Естественный в свою очередь делится на графит кристаллический и скрытокристаллический, представляет собой порошок, похожий на порох.

Производители продукции из графита предъявляют свои требования к сырью в зависимости от его назначения. В соответствии с этим проведена маркировка, и сейчас вырабатываются различные марки графита, имеющие каждая свое предназначение.

Среди них электроугольная, литейная , элементная, аккумуляторная, карандашная, смазочная, а также специальная марка по производству графита для ядерных реакторов. Весь производимый графит должен соответствовать техническим требованиям в зависимости от области его применения.

Месторождения и добыча графита

Ресурсы графита во всём мире составляют примерно 600 млн т, а его ежегодная добыча свыше 600 тыс. т. Наибольшими запасами владеют Мексика, Китай, Чехия, Бразилия, Украина, Россия, Южная Корея, Канада. Образовался этот минерал метаморфизацией осадочных пород из органических соединений. Месторождения графита с давних времён представляют интерес с экономической точки зрения и оцениваются мощностью в миллионы тонн.

Графит температура плавления и кипения

Разработка этих месторождений обеспечивает промышленность необходимым сырьём. Натуральный графит встречается в виде плотных кристаллических или волокнистых вкраплений в граниты , известковые породы, гнейсы , слюду . Он образует большие скопления в виде непрозрачных, серых, землистых или чешуйчатых масс. Цвет графита в пределах от серого стального до чёрного. Кусковой графит добывают подземным способом, а графитовую руду – открытым.

Применение графита

И производители, и обыватели уже давно знакомы с графитовым веществом, зарекомендовавшим себя наличием качеств, которые позволяют применять его не только для производственных процессов, но и в повседневной жизни.

Благодаря таким основным свойствам как электропроводность и огнеупорность, этот минерал нашёл широкое применение в промышленности. Металлургия использует его для изготовления тугоплавких ковшей, форм для сплавов , ёмкостей для кристаллизации. Литейное производство применяет графитовый порошок как смазку форм для литья.

Является одной из составляющих при изготовлении огнеупорного кирпича. Полировочные и шлифовальные пасты получают из графитовых смесей. Учитывая электропроводящие свойства природного элемента, он незаменим для изготовления контактов электроприборов и электродов.

Графит температура плавления и кипения

Промышленность по производству графитовых карандашей, смазочных материалов и изготовления красок тоже не обходится без этого вещества. Стержни для карандашей изготавливаются из чёрного графита, хотя в природе существует серый графит со стальным блеском. Является наполнителем пластмассы, с его помощью налажено производство искусственных алмазов.

Даже атомная энергетика оценила свойства графита и взяла его на использование. Машиностроение – материал для подшипников, уплотнительных и поршневых колец . В быту также стали использовать графитовую смазку – обрабатывать автомобильные рессоры, велосипедные цепи, даже дверные петли.

Покрасочным средством, обладающим антикоррозионными качествами является краска графитовая. Она представляет собой однокомпонентную суспензию. В её состав, кроме графитового наполнителя, входят пластификатор и связующие пигменты. Применяя такую краску, защищают бетонные, стальные, деревянные, алюминиевые, чугунные изделия от коррозии.

Графит температура плавления и кипения

В медицине графит зарекомендовал себя как одно из гомеопатических средств при кожных заболеваниях, являющихся следствием внутренних и трудно поддающихся терапии нарушений. Препятствует образованию спаек и рубцов после воспалений, а также влияет на обменные процессы. Заболевания, на которые благотворно воздействует графит, сложно перечислить, поэтому он входит в состав многих лекарственных препаратов.

Цена графита

Продажей графита занимаются специализированные компании, занимающиеся добычей и переработкой графита, цены на который достаточно приемлемы. Ценовая категория природного графита зависит от размеров его кристаллов и содержания углерода. Каждый сорт графита имеет свою стоимость – чем выше содержание углерода, тем лучше технические свойства, и тем он дороже.

Читать также:  Изготовление антенны харченко своими руками

Графит температура плавления и кипения

Реализация данного минерала производится как в розницу, так и оптом. Потребитель может графит купить на выгодных для него условиях. При покупке оптом делается скидка, обеспечивается его доставка. Стоимость зависит и от региональной принадлежности. Средняя цена на графит примерно 45 руб/кг. Готовая продукция стоит дороже.

Графит
Графит температура плавления и кипения
ФормулаC (углерод)
Физические свойства
ЦветСерый, чёрный стальной
Цвет чертыЧёрная
БлескМеталловидный
ПрозрачностьНепрозрачный
Твёрдость1–2
СпайностьСовершенная по
Плотность2,09–2,23 г/см³ г/см³
СингонияГексагональная (планаксиальная)
Медиафайлы на Викискладе

Ледебурит (эвтектическая смесь кристаллов цементита и аустенита, превращающегося при охлаждении в перлит)
Мартенсит (сильно пересыщенный твёрдый раствор углерода в α-железе с объемно-центрированной тетрагональной решеткой)
Перлит (эвтектоидная смесь, состоящая из тонких чередующихся пластинок феррита и цементита)
Сорбит (дисперсный перлит)
Троостит (высокодисперсный перлит)
Бейнит (устар: игольчатый троостит) — ультрадисперсная смесь кристаллов низкоуглеродистого мартенсита и карбидов железа

Белый чугун (хрупкий, содержит ледебурит и не содержит графит)
Серый чугун (графит в форме пластин)
Ковкий чугун (графит в хлопьях)
Высокопрочный чугун (графит в форме сфероидов)
Половинчатый чугун (содержит и графит, и ледебурит)

Графи́т (от др.-греч. γράφω «записывать, писать») — минерал из класса самородных элементов, одна из аллотропных модификаций углерода. Структура слоистая. Слои кристаллической решётки могут по-разному располагаться относительно друг друга, образуя целый ряд политипов, с симметрией от гексагональной сингонии (дигексагонально-дипирамидальный), до тригональной (дитригонально -скаленоэдрический). Слои слабоволнистые, почти плоские, состоят из шестиугольных слоёв атомов углерода. Кристаллы пластинчатые, чешуйчатые. Образует листоватые и округлые радиально-лучистые агрегаты, реже — агрегаты концентрически-зонального строения. У крупнокристаллических выделений часто треугольная штриховка на плоскостях (0001). Природный графит имеет разновидности: плотнокристаллические (жильный), кристаллический(чешуйчатый), скрытокристаллический (аморфный, микрокристаллический) и различается по размерам кристаллов.

Содержание

История [ править | править код ]

Графит известен с древних времён, однако точных сведений об истории его использования получить не удаётся из-за сходства красящих свойств с другими минералами, например, молибденитом. Одним из наиболее ранних свидетельств применения графита является глиняная посуда культуры Боян-Марица ( 4000 лет до н. э. ), раскрашенная с помощью этого минерала [1] . Название «графит» предложено в 1789 году Абраамом Вернером, встречаются также названия «чёрный свинец» (англ. black lead ), «карбидное железо», «серебристый свинец» [2] .

Впервые в России графит был открыт в 1826 году в Златоустовском округе на Урале.

Физические свойства [ править | править код ]

Хорошо проводит электрический ток. Обладает низкой твёрдостью (1 по шкале Мооса). Относительно мягкий. После воздействия высоких температур становится немного более твёрдым и очень хрупким. Плотность 2,08—2,23 г/см³. Цвет тёмно-серый, блеск металлический. Неплавкий, устойчив при нагревании в отсутствие воздуха. Жирный (скользкий) на ощупь. Природный графит содержит 10—12 % примесей глин и окислов железа. При трении расслаивается на отдельные чешуйки (это свойство используется в карандашах).

Теплопроводность графита от 100 до 354,1 Вт/(м*К), зависит от марки графита, от направления относительно базисных плоскостей и от температуры [3] .

Электрическая проводимость монокристаллов графита анизотропна, в направлении, параллельном базисной плоскости, близка к металлической, в перпендикулярном — в сотни раз меньше. Минимальное значение проводимости наблюдается в интервале 300—1300 К, причём положение минимума смещается в область низких температур для совершенных кристаллических структур. Наивысшую электрическую проводимость имеет рекристаллизованный графит.

Коэффициент теплового расширения графита до 700 К отрицателен в направлении базисных плоскостей (графит сжимается при нагревании), его абсолютное значение с повышением температуры уменьшается. Выше 700 К коэффициент теплового расширения становится положительным. В направлении, перпендикулярном базисным плоскостям, коэффициент теплового расширения положителен, практически не зависит от температуры и более чем в 20 раз выше среднего абсолютного значения для базисных плоскостей.

Теплоёмкость графита в диапазоне температур 300÷3000К хорошо согласуется с дебаевской моделью [4] . В высокотемпературной области после Т>3500K наблюдается аномальное поведение теплоёмкости графита аналогично алмазу: экспериментальные данные по теплоёмкости резко отклоняются вверх от нормальной (дебаевской) кривой и аппроксимируются экспоненциальной функцией [5] [6] [7] , что обуславливается больцмановской компонентой поглощения тепла кристаллической решеткой [8] .

Пределы температуры плавления -> 3845-3890 С, кипение начинается при 4200 С [ источник не указан 38 дней ] . Во время сжигания 1 кг графита выделяется 7832 ккал тепла.

Монокристаллы графита диамагнитны, магнитная восприимчивость незначительна в базисной плоскости и велика в ортогональных базисным плоскостях. Коэффициента Холла меняется с положительного на отрицательный при 2400 К.

Химические свойства [ править | править код ]

Со многими веществами (щелочными металлами, солями) образует соединения включения.

Реагирует при высокой температуре с кислородом, сгорая до углекислого газа. Фторированием в контролируемых условиях можно получить (CF)x.

В неокисляющих кислотах не растворяется.

Структура [ править | править код ]

Графит температура плавления и кипения

Графит температура плавления и кипения

Каждый атом углерода ковалентно связан с тремя другими окружающими его атомами углерода.

Различают две модификации графита: α-графит (гексагональный P63/mmc) и β-графит (ромбоэдрический R(-3)m). Различаются упаковкой слоёв. У α-графита половина атомов каждого слоя располагается над и под центрами шестиугольника (укладка …АВАВАВА…), а у β-графита каждый четвёртый слой повторяет первый. Ромбоэдрический графит удобно представлять в гексагональных осях, чтобы показать его слоистую структуру.

β-графит в чистом виде не наблюдается, так как является метастабильной фазой. Однако, в природных графитах содержание ромбоэдрической фазы может достигать 30 %. При температуре 2500-3300 К ромбоэдрический графит полностью переходит в гексагональный.

Условия нахождения в природе [ править | править код ]

Сопутствующие минералы: пирит, гранаты, шпинель. Образуется при высокой температуре в вулканических и магматических горных породах, в пегматитах и скарнах. Встречается в кварцевых жилах с вольфрамитом и др. минералами в среднетемпературных гидротермальных полиметаллических месторождениях. Широко распространён в метаморфических породах — кристаллических сланцах, гнейсах, мраморах. Крупные залежи образуются в результате пиролиза каменного угля под воздействием траппов на каменноугольные отложения (Тунгусский бассейн, Курейское месторождение скрытокристаллического (аморфного) графита, Ногинское месторождение (в настоящее время не разрабатывается). Акцессорный минерал метеоритов. С помощью ионной масс-спектрометрии российским учёным удалось обнаружить в составе графита золото, серебро и платиноиды (платина, палладий, иридий, осмий и проч.) в форме металлоорганических нанокластеров.

Искусственный синтез [ править | править код ]

Искусственный графит получают разными способами:

  • Ачесоновский графит: нагреванием смеси кокса и пека до 2800 °C;.
  • Рекристаллизованный графит: термомеханической обработкой смеси, содержащей кокс, пек, природный графит и карбидообразующие элементы.
  • Пиролитический графит: пиролизом из газообразных углеводородов при температуре 1400—1500 °C в вакууме с последующим нагреванием образовавшегося пироуглерода до температуры 2500—3000 °C при давлении 50 МПа (образовавшийся продукт — пирографит; в электротехнической промышленности применяется наименование «электрографит»).
  • Доменный графит: выделяется при медленном охлаждении больших масс чугуна.
  • Карбидный графит: образуется при термическом разложении карбидов.

Переработка [ править | править код ]

Графит температура плавления и кипения

Переработкой графита получают различные марки графита и изделия из них.

Товарные сорта графита получают обогащением графитовых руд. В зависимости от степени очистки графитовые концентраты классифицируют на промышленные марки по областям применения, каждая из которых выдвигает специфические требования к физико-химическим и технологическим свойствам графитов.

В свете последних открытий российских учёных появилась перспектива получения из графитовых руд золота и платиноидов.

Переработка графита в терморасширенный графит [ править | править код ]

На первом этапе исходный кристаллический графит окисляют. Окисление сводится к внедрению молекул и ионов серной или азотной кислоты в присутствии окислителя (пероксид водорода, перманганат калия и др.) между слоями кристаллической решетки графита. Окисленный графит отмывают и сушат. Затем окисленный графит подвергают термообработке до Т=1000 °C со скоростью 400—600 °C/с. Благодаря чрезвычайно высокой скорости нагрева происходит резкое выделение газообразных продуктов разложения внедренной серной кислоты из кристаллической решетки графита. Газообразные продукты создают большое (до 300—400 атм) расклинивающее давление в межкристаллитном пространстве, при этом образуется терморасширенный графит, отличающийся высокой удельной поверхностью и низкой насыпной плотностью. В полученном материале остается некоторое количество серы при применении сернокислой технологии. Далее полученный терморасширенный графит прокатывают, иногда армируют, добавляют присадки и прессуют для получения изделий.

Переработка графита для получения различных марок искусственного графита [ править | править код ]

Для производства искусственного графита используют в основном нефтяной кокс как наполнитель и каменноугольный пек как связующее. Для конструкционных марок графита в качестве добавок к наполнителю применяют природный графит и сажу. Взамен каменноугольного пека как связующего или пропитывающего вещества используют некоторые синтетические смолы, например, фурановые или фенольные.

Производство искусственного графита складывается из следующих основных технологических этапов:

  • подготовки кокса к производству (предварительного дробления, прокаливания, размола и рассева кокса по фракциям);
  • подготовки связующего;
  • приготовления углеродной массы (дозировки и смешивания кокса со связующим);
  • формования так называемых «зелёных» (необожжённых) заготовок в глухую матрицу или через мундштук прошивного пресса;
  • обжига заготовок;
  • графитации заготовок;
  • механической обработки заготовок до размеров изделий.

Кокс дробят до величин кусков 30-40 мм, затем прокаливают в специальных прокалочных печах при 1300 °C. При прокаливании достигается термическая стабильность кокса, уменьшается содержание в нём летучих веществ, увеличиваются его плотность, электро — и теплопроводность. После прокаливания кокс размалывают до необходимой крупности. Порошки кокса дозируют и смешивают с пеком в смесильных машинах при 90-130 °C.

В смесильную машину вначале загружают сухие компоненты, а затем добавляют жидкий пек. После смешивания массу равномерно охлаждают до температуры прессования (80-100 °C). Заготовки прессуют или методом выдавливания массы через мундштук, или в пресс-форме. При прессовании холодных порошков изменяют технологию подготовки помола и смешения.

Для карбонизации связующего и скрепления отдельных зёрен в монолитный материал заготовки обжигают в многокамерных газовых печах при температуре 800—1200 °C. Продолжительность цикла обжига (нагрев и охлаждение) составляет 3-5 недель в зависимости от размера и плотности заготовок. Графитация — окончательная термическая обработка — превращает углеродный материал в графит. Графитацию проводят в печах сопротивления Ачесона или в печах прямого нагрева Кастнера при температурах 2400-3000 °C. При графитировании углеродистых нефтяных заготовок идет процесс укрупнения кристаллов углерода. Из мелкокристаллического «аморфного» углерода получается крупнокристаллический графит, атомная решетка которого ничем не отличается от атомной решетки природного графита.

Некоторые изменения технологического процесса получения искусственного графита зависят от требуемых свойств конечного материала. Так, для получения более плотного материала углеродные заготовки пропитывают (после обжига) в автоклавах один или несколько раз пеком с последующим обжигом после каждой пропитки и графитацией в конце всего технологического процесса. Для получения особо чистых материалов графитацию проводят одновременно с газовой очисткой в атмосфере хлора.

Переработка графита для получения композиционных материалов [ править | править код ]

Антифрикционные углеродные материалы изготавливают следующих марок: обожженный антифрикционный материал марки АО, графитированный антифрикционный материал марки АГ, антифрикционные материалы, пропитанные баббитом, оловом и свинцом марок АО-1500Б83, АО 1500СО5, АГ-1500Б83, АГ-1500СО5, Нигран, Химанит и графитопластовые материалы марок АФГМ, АФГ- 80ВС, 7В-2А, КВ, КМ, АМС.

Антифрикционные углеродные материалы изготавливают из непрокаленного нефтяного кокса, каменноугольного пека с добавкой природного графита. Для получения плотного непроницаемого антифрикционного материала применяют пропитку его металлами. Таким методом получают антифрикционные материалы марок АГ-1500 83, АГ-1500СО5 АМГ-600Б83, АМГ-600СО5 и им подобные. Допустимая рабочая температура на воздухе и в газовых средах, содержащих кислород для АО — 250—300 °C, для АГ — 300 °C (в восстановительных и нейтральных средах 1500 и 2500 °C соответственно). Углеродные антифрикционные материалы химически стойки во многих агрессивных газовых и жидких средах. Они стойки почти во всех кислотах (до температуры кипения кислоты), в растворах солей, во всех органических растворителях и ограниченно стойки в концентрированных растворах едких щелочей.

Графит как золотосодержащее сырьё [ править | править код ]

Содержание найденного с помощью ионной масс-спектрометрии золота до десятков раз превышает содержание, выявляемое ранее при помощи химического анализа. В изученных российскими учёными пробах графита содержание золота было до 17,8 г/т — это уровень богатых золотых приисков. О перспективности добычи золота из графитовых руд говорит то, что графитовые месторождения данного типа (позднедокембрийского-раннепалеозойского возраста) широко распространены и в России, и в мире. Они есть в Европе, США, Австралии, Африке — в сущности, легче перечислить где их нет. При этом практически все они когда-то разрабатывались, а сегодня находятся в хорошо обжитых местах, с развитой инфраструктурой, в том числе промышленной. Следовательно, для запуска добычи в них золота и других благородных металлов не нужно затевать стройку на пустом месте, не нужно бороться с суровыми условиями заполярной тундры или пустыни. Это облегчает, ускоряет, а главное, удешевляет производство [9] .

Применение [ править | править код ]

Графит температура плавления и кипения

Использование графита основано на ряде его уникальных свойств.

Графит температура плавления и кипения

Графит – это природный элемент, представляющий собой одну из модификаций углерода (алотропную форму), имеющую определенным образом скомпонованную структуру кристаллов. При этом графит имеет свои разновидности – плотнокристаллический графит, чешуйчатый графит, скрытокристаллический или аморфный графит.

Графит добывают в России с начала сороковых годов XIX века. Лучшие из добываемых сортов графита отправлялись на экспорт, обеспечивая европейскую карандашную промышленность. Собственная графитовая промышленность дореволюционной России находилась в зачаточном состоянии и практически полностью была кустарной.

Свойства и разновидности графита.

Графит очень мягкий материал, который легко поддается механической обработке. Удельный вес графита, в зависимости от разновидности, находится в пределах 1,84–2,23 г/см3.

Цвет графита может быть от черного до серо-стального, с характерным металлическим блеском. Химический состав природного графита редко отличается чистотой, как правило попутно в значительных количествах в нем присутствует зола, вода и смолистые вещества (битумы).

Графит химически инертен, его частицы не растворяются как в неорганических, так и в органических растворителях. Графит, благодаря особой плотной упаковке его атомов в молекулах, обладает высокой электропроводностью, теплопроводностью и огнестойкостью. Температура плавления графита 3,850 °С, а температура кипения – 4,250 °С.

Частицы графит обладают свойством плотно прилипать к поверхностям других твердых тел с образованием на них тонких пленок. Такое покрытие металлических поверхностей графитом в разы уменьшает коэффициент трения.

Графит имеет три разновидности структуры, которые определяют область его применения и способы переработки графитовых руд:

  • плотнокристаллический графит;
  • чешуйчатый графит;
  • скрытокристаллический или аморфный графит.

Плотнокристаллический графит.

Плотнокристаллический графит получил свое название из-за того, что кристаллы составляющие его структуру очень плотно прилегают друг к другу и имеют и ориентированы особым образом. Такое расположение кристаллов графита затрудняет их расщепление. Плотнокристаллический графит имеет меньшую жирность и пластичность по сравнению с графитами других структур.

Чешуйчатый графит.

Графит со структурой из отдельных кристаллов или параллельных сростков, имеющих форму пластинок или чешуек получил название чешуйчатый графит. Частицы чешуйчатого графита отличаются блеском, жирные и пластичные. На технических свойствах графита влияет и размер составляющих структуру чешуек. Чем более тонкие чешуйки составляют структуру, тем более ценным являются чешуйчатый графит. Различают крупночешуйчатые графиты, с шириной чешуек от десятой доли миллиметра до нескольких сантиметров и мелкочешуйчатые, размер которых не превышает 0,1 мм.

Скрытокристаллический или аморфный графит.

Размер кристаллов, составляющих структуру скрытокристаллического (аморфного) графита менее одного микрометра. Скрытокристаллический графит матовый, мало жирный и малопластичный. Чем более упорядочено в одной плоскости сориентированы элементарные кристаллы скрытокристаллического (аморфного) графита и чем они тоньше, тем выше его техническая ценность.

В нашей стране располагаются значительные запасы скрытокристаллического (аморфного) графита с высоким содержанием его в руде, что позволяет не только полностью обеспечить внутренний рынок, но и отправлять примерно половину на экспорт.

Что касается чешуйчатого и плотнокристаллического графита, то здесь присутствует явный дефицит сырья. Основные месторождения этих разновидностей графита на территории бывшего СССР расположены на Украине.

Требование промышленности к качеству товарного графита

Руды содержащие кристаллический графит относятся к промышленным при его наличии в 2,3–2,4%. Многие обогатительные фабрики способны перерабатывать руды содержащие и меньшее его количество. Само малое содержание кристаллического графита в руде не оказывает влияние на процесс обогащения, лишь только уменьшается выход концентрата и снижается экономическая целесообразность переработки.

Руды содержащие скрытокристаллический (аморфный) графит не поддаются обогащению. Процесс переработки таких руд состоит из сушки, измельчения и разделению по крупности (классификации). Поэтому целесообразность переработки таких руд зависит от среднего содержания графита

Графитовые руды подразделяются в соответствии со структурными разновидностями графита. Поэтому различают три типа руд:

  • руды содержащие чешуйчатый графит,
  • руды плотнокристаллических графитов,
  • метаморфизованные угли, содержащие скрытокристаллические графиты.

Руды чешуйчатых графитов.

Руды чешуйчатых графитов содержат от 2 до 15%, иногда до 25% графита, легко обогащаются. Чешуйчатые графитовые руды образуют пластовые залежи и линзы значительных размеров. Образуются из осадочных пород, первоначально содержащих органические вещества. Эти вещества преобразуются в углерод и затем кристаллизуются в графит. В результате вторичных изменений происходит прорастание графитовых чешуек кальцитом и каолинитом.

Известные месторождения находятся в Китае, на Мадагаскаре, в Зимбабве, Бразилии, Чехии, Украине, США, есть они и в России. Графит этих месторождений встречается в чешуйках, в которых он может переслаиваться с пластинками слюды.

Большая техническая ценность крупночешуйчатых графитов, относительно легкая добыча содержащей графит руды, значительные размеры месторождений, позволяющие применять механизированную добычу позволяют строить мощные обогатительные фабрики.

Другим источником чешуйчатого графита являются месторождения в зонах контакта известняков с магматическими горными породами из глубин земной коры. В результате известняки превращаются в графитовые скарны.

Крупночешуйчатый графит образует среди скарнов жилы неправильной формы, и могут достигать размеров в длину 120 м и мощности 12 м. Месторождения этого типа дают высокое техническое качество графита и относятся к важным объектам промышленной разработки. К сожалению, в природе они встречаются редко.

Руды плотнокристаллических графитов.

Плотнокристаллические графиты образуются в месторождениях относящихся к магматическому и пневматолитическому генетическому типу.

Магматические месторождения находятся среди глубинных, жильных и эффузивных извержений. Графит месторождений этого типа образуется как продукт кристаллизации из газообразных составляющих магмы. Графит образует скопления в форме штоков, гнезд и жил, или встречается в рассеянном виде, при этом его концентрация может достигать 60–85%.

Месторождений этого типа известно немного и размеры их для промышленной разработки все-таки невелики.

Графитовые рудные тела пневматолитических месторождений имеют форму типичных жил, которые, образуются заполнением открытых трещин графитом и сопутствующими ему минералами, кристаллизующимися из проникавших по этим трещинам газов.

Метаморфизованные угли.

Так же графит образуется как результат метаморфизма углей. Как известно в результате процессов метаморфизма в ископаемых углях происходит изменение внутреннего строения, химического состава и физических свойств под действием температуры и давления

Простыми словами в результате изменения химического состава в углях возрастает процент содержания углерода и уменьшается содержание водорода и кислорода. В зависимости от степени этих изменений природа выдает на гора уголь от антрацита до типичного скрытокристаллического графита.

При низкой степени метаморфизма иногда в одном и том же месторождении одновременно встречаются графит и антрацит.

Такова вкратце общая картина по графиту. Далее мы поговорим о процессах обогащения графитовых руд.

Графит

Графит температура плавления и кипения

Фазы железоуглеродистых сплавов

Феррит (твёрдый раствор внедрения C в α-железе с объемно-центрированной кубической решеткой)
Аустенит (твёрдый раствор внедрения C в γ-железе с гранецентрированной кубической решеткой)
Цементит (карбид железа; Fe3C метастабильная высокоуглеродистая фаза)
Графит стабильная высокоуглеродистая фаза

Структуры железоуглеродистых сплавов
Оцените статью
Добавить комментарий

Adblock
detector