Головка балансира станка качалки

Определение нагрузок производится по различным теориям, которые, в основном, делятся на две группы: статические и динамические. Согласно исследованиям А. Н. Адонина [1] граница между статическим и динамическим режимами откачки находится в интервале (переходная зона) параметра Коши:

Головка балансира станка качалки,

где а – скорость звука в штангах.

Для одноразмерной колонны а = 4600 м/с, для двухступенчатой а = 4900 м/с; для трехступенчатой а = 5300 м/с. В настоящее время применяют в основном режимы при μ = 0,5 При μ > 0,7 многие формулы просто неприемлемы из-за больших резонансных усилий.

4.2.1. Максимальная нагрузка по статической теории (формула Муравьева И. М.)

Головка балансира станка качалки, (4.13)

где Рж – вес столба жидкости над плунжером, высотой, равной hд, с учетом буферного давления Рб,

Головка балансира станка качалки; (4.14)

b – коэффициент облегчения штанг в жидкости,

Головка балансира станка качалки; (4.15)

m – фактор динамичности,

Головка балансира станка качалки, (4.16)

где SA – длина хода точки подвеса штанг; n – число качаний в минуту.

Вес штанг в воздухе

Головка балансира станка качалки.

Минимальная нагрузка будет, очевидно, при начале хода штанг вниз, когда вес жидкости не действует на штанги, а динамический фактор вычитается:

Головка балансира станка качалки, (4.17)

4.2.2. Определение нагрузок по формулам А. С. Вирновского. Согласно исследованиям А. Н. Адонина [1] они дают наилучшее совпадение с опытными результатами замеров нагрузки:

Головка балансира станка качалки (4.18)

где Рж – вес столба жидкости высотой hд с учетом буферного давления с площадью, равной Fпл; Р’ж = (Fпл – fшт) ·ρж·g·L – вес столба жидкости в кольцевом пространстве; Fпл, fшт – площадь поперечного сечения плунжера и штанг соответственно; L – глубина спуска насоса; Ршт – вес колонны штанг в воздухе; Р’шт – вес колонны штанг в жидкости.

4.2.3. Формула для минимальной нагрузки получается из предыдущей (4.18), если положить Р’ж = 0, Рж = 0, а кинематические коэффициенты α1 и а1 заменить на аналогичные α2 и а2 при ходе штанг вниз и переменить у двух последних членов знаки на противоположные:

Головка балансира станка качалки (4.19)

Здесь SА – длина хода точки подвеса штанг; Ршт – вес колонны штанг в воздухе; Р’шт – вес колонны штанг в жидкости; α1, α2, а1, а2 – кинематические коэффициенты А. С. Вирнов-ского [1,23],

Головка балансира станка качалки ,

где Vmax – действительная максимальная скорость точки подвеса штанг; 1 – при ходе вверх; 2 – при ходе вниз; D, dшт – диаметры насоса и штанг; ω – угловая скорость в 1/с, ω = π·n / 30; λшт – удлинение штанг от веса столба жидкости,

Головка балансира станка качалки; (4.19′)

Головка балансира станка качалки– коэффициент изменения сечения потока жидкости при переходе от насоса в трубы; Fтр – площадь внутреннего канала труб; fтр – площадь сечения труб по металлу;

Головка балансира станка качалки– коэффициент отношения площадей.

Если расчет ведется для ступенчатой колонны, то вместо fшт нужно брать

Головка балансира станка качалки , (4.20)

где ε1, ε2, …, εn – доли ступенчатой колонны штанг, Σεi = 1.

Упрощенные А. Н. Адониным формулы А. С. Вирновского можно использовать для широкого диапазона SА -1 , D 3 , станок-качалка СК-12-2,5-4000.

Решение

По формуле (4.12) определим параметр Коши, а = 4900 м/с; α = 1,26 с-1;

Головка балансира станка качалки.

Режим динамический, следовательно, формулы динамической теории дадут наиболее правильную нагрузку.

1. Статическая теория, формулы (4.13), (4.17).

По формуле (2.14) определим Рж, учитывая, что Рб = 0:

Головка балансира станка качалки;

Головка балансира станка качалки.

Для СК-12 SА = 2,5 м, nmax = 12 мин -1 . Тогда

Головка балансира станка качалки.

Вес штанг в воздухе

Головка балансира станка качалки;

Головка балансира станка качалки;

Головка балансира станка качалки.

2. Формулы А. С. Вирновского (4.18) – (4.20).

Головка балансира станка качалки;

Головка балансира станка качалки;

Головка балансира станка качалки;

Головка балансира станка качалки.

Головка балансира станка качалки;

Головка балансира станка качалки;

Головка балансира станка качалки;

Головка балансира станка качалки;

Головка балансира станка качалки;

Головка балансира станка качалки.

Для С К-12-2,5- 4000 при SА = 2,5 м [15]

Головка балансира станка качалки.

Исходя из вычисленных коэффициентов по формуле (4.18)

Головка балансира станка качалки

Головка балансира станка качалки

3. Упрощенные формулы А. С. Вирновского (4.21)

Головка балансира станка качалки;

Головка балансира станка качалки.

4. Формула И. А. Чарного

Головка балансира станка качалки;

Головка балансира станка качалки;

Головка балансира станка качалки

5. Формула А. Н. Адонина

Головка балансира станка качалки;

Головка балансира станка качалки

Таким образом, принимая за основу нагрузку, рассчитанную по формулам А. С. Вирновского, можно сказать, что наиболее близкие значения по Рmax дают формулы А. Н. Адонина (+809) и упрощенная формула А. С. Вирновского ( – 3428); по Рmin наиболее близкие значения дают упрощенная формула А. С. Вирновского (+2400 Н) и формула И. М. Муравьева (+3670 Н).

Оценивая трудоемкость расчетов, следует отметить, что для оценочных, приближенных расчетов следует пользоваться формулой для Рmax Муравьева И. М. (4.13) и уточненной автором для Рmin (4.17), а для конструкторских или точных технологических расчетов следует пользоваться формулами А. С. Вирновского или А. Н. Адонина.

Головка балансира станка качалки

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Головка балансира станка качалки

Головка балансира станка качалки

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ – конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Головка балансира станка качалки

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Штанговая насосная установка –комплекс оборудования для механизированной добычи жидкости через скважины с помощью штангового насоса, приводимого в действие СТАНКОМ-КАЧАЛКОЙ.

Штанговые скважинные насосы (ШСН) обеспечивают откачку из скважин углеводородной жидкости, обводненностью до 99 %, абсолютной вязкостью до 100 мПа·с, содержанием твердых механических примесей до 0,5 %, свободного газа на приеме до 25 %, объемным содержанием сероводорода до 0,1 %, минерализацией воды до 10 г/л и температурой до 130 0 С.

– Наземное оборудование: станок-качалка (СК), оборудование устья.

– Подземное оборудование: насосно-компрессорные трубы (НКТ), насосные штанги (НШ), штанговый скважинный насос (ШСН) и различные защитные устройства, улучшающие работу установки в осложненных условиях.

Штанговая глубинная насосная установка (Рисунок ?) состоит из скважинного насоса 2 вставного или невставного типов, насосных штанг 4 насосно-компрессорных труб 3, подвешенных на планшайбе или в трубной подвеске, сальникового уплотнения 6, сальникового штока 7, станка-качалки 8, фундамента и тройника 5. На приеме скважинного насоса устанавливается защитное приспособление в виде газового или песочного фильтра 1.

Скважинный штанговый насос представляет собой одноплунжерный насос с длинным цилиндром, шариковыми клапанами и длинным проходным плунжером.

При ходе плунжера вверх он нагнетает жидкость, находящуюся между стенками цилиндра и штангами. А в полость под плунжером поступает жидкость из скважины. При ходе вниз насос нагнетает (выжимает) объём жидкости. Равный объёму опускающегося в цилиндр штока, т.е. это насос дифференциального действия.

Головка балансира станка качалки

Штанговый насос опускается в скважину ниже уровня жидкости и состоит из:

– плунжера, соединенного со штангой,

Читать также:  Проверка мосфетов на материнской плате

– клапанов всасывающих и нагнетательных

Цилиндр невставного штангового насоса опускается на колонне насосно-компрессорных труб, а плунжер – на колонне штанг внутри насосно-компрессорных труб;

цилиндр вставного штангового насоса опускается вместе с плунжером на штангах и закрепляется на замковой опоре, установленной на конце насосно-компрессорных труб или на пакере;

– штанговый насос большого диаметра опускается целиком на колонне насосно-компрессорных труб и соединяется с колонной штанг через сцепное устройство.

– штанговые насосы с подвижным цилиндром и неподвижным плунжером,

– с двумя ступенями сжатия (для откачки сильно газированных нефтей), с двумя цилиндрами и плунжерами (для одновременной откачки из двух горизонтов),

– с камерой разрежения (для высоковязких нефтей) и др.

Насосная штанга предназначена для передачи возвратно-поступательного движения плунжера насоса. Штанга представляет собой стержень круглого сечения с утолщенными головками на концах, соединяются в колонну с помощью муфт. Длина колонны до 2500м. При длине свыше 1000м колонна штанг делается ступенчатой, с увеличивающимся кверху диаметром для уменьшения массы и достижения равнопрочности.

Для регулирования длины колонн штанг с целью нормальной посадки плунжера в цилиндр насоса имеются также укороченные штанги (футовки) длиной 1; 1.2; 1.5; 2 и 3 м.

Выпускаются штанги из легированных сталей диаметром (по телу) 16, 19, 22, 25 мм и длиной 8 м — для нормальных условий эксплуатации. Длина штанги 8-10м, диаметр 12,7-28,6 мм.

Используются также полые неметаллические (стеклопластик) штанги или непрерывные колонны штанг, наматываемые при подъеме на барабан. Насосные штанги из стеклопластика отличаются большой коррозионной стойкостью и позволяют снизить энергопотребление до 20 %.

Особая штанга — устьевой шток, соединяющий колонну штанг с канатной подвеской. Поверхность его полирована (полированный шток). Он изготавливается без головок, а на концах имеет стандартную резьбу. Для защиты от коррозии осуществляют окраску, цинкование и т.п., а также применяют ингибиторы.

Отличительная особенность ШСНУ обстоит в том, что в скважине устанавливают плунжерный (поршневой) насос, который приводится в действие поверхностным приводом посредством колонны штанг.

Недостатками штанговых насосов является ограниченность глубины их подвески и малая подача нефти из скважин.

По способу крепления насосов к колонне НКТ различают вставные (НСВ) и не вставные (НСН) скважинные насосы.

У не вставных (трубных) насосов цилиндр с седлом всасывающего клапана опускают в скважину на НКТ. Плунжер с нагнетательным и всасывающим клапаном опускают в скважину на штангах и вводят внутрь цилиндра. Плунжер с помощью специального штока соединен с шариком всасывающего клапана. Недостаток НСН — сложность его сборки в скважине, сложность и длительность извлечения насоса на поверхность для устранения какой-либо неисправности.

Головка балансира станка качалки

Насосы скважинные вставные

1 — впускной клапан; 2 — цилиндр; 3 — нагнетательный клапан; 4 — плунжер;

Вставные насосы целиком собирают на поверхности земли и опускают в скважину внутрь НКТ на штангах. НСВ состоит из трех основных узлов: цилиндра, плунжера и замковой опоры цилиндра.

В НСН для извлечения цилиндра из скважины необходим подъем всего оборудования (штанг с клапанами, плунжером и НКТ). В этом коренное отличие между НСН и НСВ. При использовании вставных насосов в 2 ¸ 2.5 раза ускоряются спускоподъемные операции при ремонте скважин, и существенно облегчается труд рабочих. Однако производительность вставного насоса при трубах данного диаметра всегда меньше производительности не вставного.

Насос НСВ спускается на штангах. Крепление (уплотнение посадками) происходит на замковой опоре, которая предварительно опускается на НКТ. Насос извлекается из скважины при подъеме только колонны штанг. Поэтому НСВ целесообразно применять в скважинах с небольшим дебитом и при больших глубинах спуска.

Невставной (трубный) насос представляет собой цилиндр, присоединенный к НКТ и вместе с ними спускаемый в скважину, а плунжер спускают и поднимают на штангах. НСН целесообразны в скважинах с большим дебитом, небольшой глубиной спуска и большим межремонтным периодом.

Головка балансира станка качалки

Невставные скважинные насосы

1 — всасывающий клапан; 2 — цилиндр; 3 — нагнетательный клапан; 4 — плунжер;

5 — захватный шток; 6 — ловитель

Устьевое оборудование насосных скважин предназначено для герметизации затрубного пространства, внутренней полости НКТ, отвода продукции скважин и подвешивания колонны НКТ.

Головка балансира станка качалки

Типичное оборудование устья скважины для штанговой насосной установки

1 — колонный фланец; 2 — планшайба; 3 — НКТ; 4 — опорная муфта; 5 — тройник, 6 — корпус сальника, 7 — полированный шток, 8 — головка сальника, 9 — сальниковая набивка

Устьевое оборудование типа ОУ включает устьевой сальник, тройник, крестовину, запорные краны и обратные клапаны.

Устьевой сальник герметизирует выход устьевого штока с помощью сальниковой головки и обеспечивает отвод продукции через тройник. Тройник ввинчивается в муфту НКТ. Наличие шарового соединения обеспечивает самоустановку головки сальника при несоосности сальникового штока с осью НКТ, исключает односторонний износ уплотнительной набивки и облегчает смену набивки.

Станок-качалка является индивидуальным приводом скважинного насоса и преобразует вращение вала двигателя в возвратно-поступательное движение, передаваемое колонне штанг через гибкую (канатную, цепную) подвеску и полированный шток. Применяются в основном:

– балансирные (одно- и двухплечевые) и

– безбалансирные, а также

Максимальная длина хода точки подвеса штанг 1-6 м (башенные до 12 м), максимальная нагрузка 1-20 тс, частота ходов в минуту от 5 до 15. Используют электрические, реже газовые двигатели (на нефтяном газе от скважины) мощностью до 100 кВт.

Станция управления ШГН обеспечивает пуск, установку, защиту от перегрузок, а также периодическую работу.

Дополнительное оборудование ШГН:

– якорь для предотвращения перемещений нижнего конца насосно-компрессорных труб;

– хвостовик – колонна насосно-компрессорных труб малого диаметра (25-40 ниже насоса для выноса воды;

– газовые и песочные якоря для защиты насоса от попадания свободного газа и абразивных механических примесей;

– штанговые протекторы (полимерные или с катками) для уменьшения износа труб и штанговых муфт в наклонных скважинах;

– скребки на штангах для удаления парафиновых отложений с насосно-компрессорных труб:

– динамограф, показывающий зависимость нагрузки от перемещения точки подвеса штанг, для технической диагностики узлов ШГН.

Продукция скважины (нефть, вода) подается на поверхность по насосно-компрессорным трубам, обсадной колонне, либо по полым штангам. Производительность при постоянной откачке до 300 м 3 /сут.

Читать также:  Не греет утюг причины

Основные узлы станка-качалки — рама, стойка в виде усеченной четырехгранной пирамиды, балансир с поворотной головкой, траверса с шатунами, шарнирноподвешенная к балансиру, редуктор с кривошипами и противовесами. СК комплектуется набором сменных шкивов для изменения числа качаний, т.е. регулирование дискретное. Для быстрой смены и натяжения ремней электродвигатель устанавливается на поворотной раме-салазках.

Головка балансира станка качалки

Станок-качалка типа СКД

1 — подвеска устьевого штока; 2 — балансир с опорой; 3 — стойка; 4 — шатун; 5 — кривошип;

6 — редуктор; 7 — ведомый шкив; 8 — ремень; 9 — электродвигатель; 10 — ведущий шкив;

11 — ограждение; 12 — поворотная плита; 13 — рама; 14 —противовес; 15 — траверса;

16 — тормоз; 17 — канатная подвеска

Монтируется станок-качалка на раме, устанавливаемой на железобетонное основание (фундамент). Фиксация балансира в необходимом (крайнем верхнем) положении головки осуществляется с помощью тормозного барабана (шкива). Головка балансира откидная или поворотная для беспрепятственного прохода спускоподъемного и глубинного оборудования при подземном ремонте скважины. Поскольку головка балансира совершает движение по дуге, то для сочленения ее с устьевым штоком и штангами имеется гибкая канатная подвеска 17. Она позволяет регулировать посадку плунжера в цилиндр насоса или выход плунжера из цилиндра, а также устанавливать динамограф для исследования работы оборудования.

Амплитуду движения головки балансира (длина хода устьевого штока) регулируют путем изменения места сочленения кривошипа с шатуном относительно оси вращения (перестановка пальца кривошипа в другое отверстие).

За один двойной ход балансира нагрузка на СК неравномерная. Для уравновешивания работы станка-качалки помещают грузы (противовесы) на балансир, кривошип или на балансир и кривошип. Тогда уравновешивание называют соответственно балансирным, кривошипным (роторным) или комбинированным.

Блок управления обеспечивает управление электродвигателем СК в аварийных ситуациях (обрыв штанг, поломки редуктора, насоса, порыв трубопровода и т.д.), а также самозапуск СК после перерыва в подаче электроэнергии.

Выпускают СК с грузоподъемностью на головке балансира от 2 до 20 т.

Последнее изменение этой страницы: 2016-07-15; Нарушение авторского права страницы

Применяемое оборудование: Принцип работы станка качалки

Электродвигатель через клиноремённую передачу и редуктор придаёт двум массивным кривошипам, расположенных с двух сторон редуктора, круговое движение. Крившипнно шатунный механизм в целом преобразовывает в возвратно-поступательное движение балансира, который вращается на опорной оси, укреплённой на стойке. Балансир сообщает возвратно-поступательное движение канатной подвеске, штангам и плунжеру.

При ходе плунжера вверх нагнетательный клапан под действием жидкости закрывается и вся жидкость, находящиеся под плунжером, поднимается вверх на высоту равную длине хода плунжера. В это время скважинная жидкость через всасывающий клапан заполняет цилиндр насоса.

При ходе плунжера вниз всасывающий клапан закрывается, жидкость под плунжером сжимается, и открывается нагнетательный клапан. В цилиндр погружаются штанги, связанные с плунжером.

Таким образом, ШСН – поршневой насос однородного действия, а в целом комплекс из насоса и штанг – двойного действия.

Жидкость из НКТ вытисняется через тройник в нефтесборный трубопровод.

Принцип работы штанговой насосной установки

Штанговая насосная установка состоит из скважинного насоса, который спускается в скважину под динамический уровень на насосно-компрессорных трубах диаметром 38-102мм. и штангах диаметром 16-25мм. индивидуального привода, состоящего из станка-качалки и электродвигателя, и устьевого оборудования, в состав которого входят: тройник с сальником и планшайба. Верхняя штанга, называемая полированным штоком, пропускается через сальник и соединяется с головкой балансира станка-качалки с помощью канатной подвески и траверсы.

Плунжерный насос приводится в действие от станка-качалки, где вращательное движение, получаемое от двигателя при помощи редуктора, кривошипно-шатунного механизма и балансира, преобразуется в возвратно-поступательное движение, передаваемое плунжеру штангового насоса через колонну штанг.

При ходе плунжера вверх под ним снижается давление, и жидкость из межтрубного пространства через открытый всасывающий клапан поступает в цилиндр насоса.

При ходе плунжера вниз всасывающий клапан закрывается, а нагнетательный клапан открывается, и жидкость из цилиндра переходит в подъёмные трубы. При непрерывной работе насоса уровень жидкости в НКТ повышается, жидкость доходит до устья скважины и через тройник переливается в выкидную линию.

Обратный клапан для перепуска газа;

Электродвигатель на поворотной салазке;

Схема штанговой скважинно-насосной установки (УШГН)

Головка балансира станка качалки

Описание работы насоса

Скважинные штанговые насосы предназначены для откачивания из нефтяных скважин жидкости обводнённостью до 90 %, температурой не более 130 0 С, содержанием сероводорода не более 50 г/л, минерализирующей воды не более 10 г/л.

Скважинные насосы представляют собой вертикальную конструкцию одинарного действия с неподвижным цилиндром, с подвижным металлическим плунжером и шариковыми клапанами; спускаются в скважину на колонне насосно-компрессорных труб и насосных штанг.

Скважинные насосы изготавливаются следующих типов:

  • · НВ1 – вставные с замком наверху;
  • · НВ2 – вставные с замком внизу;
  • · НН – не вставные без ловителя;
  • · НН1 – не вставной с захватным штоком;
  • · НН2 – не вставной с ловителем.

Выпускаются насосы следующих конструктивных исполнении:

по конструкции (исполнению) цилиндра:

5 – с толсто стенным цельным (безвтулочным) цилиндром;

С – с составным (втулочным) цилиндром;

по конструктивным особенностям, определяемым функциональным назначением (областью применения):

Т – с полым трубчатым штоком, обеспечивающим подъём жидкостью по каналу колонны трубчатых штанг;

А – со сцепляющим устройством (только для насосов типа «НН»), обеспечивающим сцепление колонны насосных штанг с плунжером насоса;

Д 1 – одноступенчатые, двух плунжерные, обеспечивающие создание гидравлического низа;

Д 2 – одноступенчатые, двух плунжерные, обеспечивающие двухступенчатое сжатие откачиваемой жидкости (насосы исполнении Д 1 и Д 2 – одноступенчатые, одноплунжерные);

по стойкости к среде:

без обозначения – стойкие к среде с содержанием механических примесей до 1,3 г/л (нормальные);

И – стойкие к среде с содержанием механических примесей более 1,3 г/л (абразивостойкие).

В условном обозначении насоса, например НН25А-44-18-15-2, первые две буквы и цифры указывают тип насоса, следующие буквы – исполнение цилиндра и насоса, первые две цифры диаметр насоса, последующие – длину хода плунжера в мм. и напор в метрах, уменьшенные в 100 раз и последняя цифра – группу посадок.

Вставные скважинные насосы закрепляются в насосно-компрессорных трубах на замковой опоре типа ОМ, в условное обозначение, в которое входит: тип опоры; условный размер опоры; номер отраслевого стандарта.

Читать также:  Как правильно паять наушники с микрофоном

Скважинный штанговый насос – гидравлическая машина объемного типа, где уплотнения между плунжером и цилиндром достигается за счёт высокой прочности их рабочих поверхностей и регламентируемых зазоров. В зависимости от размера зазора (на диаметр) в паре «цилиндр-плунжер» выпускают насосы четырёх групп посадок.

Цилиндры насосов выпускают в двух исполнениях:

ЦБ – цельный (без втулочный), толстостенный;

ЦС – составной из набора втулок, стянутых внутри кожуха переводниками.

В зависимости от назначения и области применения скважинных насосов плунжеры и пары «седло-шарик» клапанов выпускаются различных конструкций, материальных исполнении и различными видами уплотнений их рабочих поверхностей. насосная установка скважина разрез

Плунжеры насосов выпускают в четырёх исполнениях:

П 1Х – с кольцевыми канавками, цилиндрической расточкой на верхнем конце и с хромовым покрытием наружной поверхности;

П2Х – то же, но без цилиндрической расточки на верхнем конце;

П1И – с кольцевыми канавками, цилиндрической расточкой на верхнем конце и упрочнением наружной поверхности напылением износостойкого порошка;

П2И – то же, без цилиндрической расточкой на верхнем конце.

Пары «седло-шарик» клапанов насоса имеют три исполнения:

К – с цилиндрическим седлом и шариком из нержавеющей стали;

КБ – то же, с седлом с буртиком;

КН – с цилиндрическим седлом из твёрдого сплава и шариком из нержавеющей стали.

Конструктивно все скважинные насосы из цилиндра, плунжера, клапанов, замка (для вставных насосов), присоединительных и установочных деталей. При конструкции насосов соблюдается принцип максимально возможной унификации указанных узлов и деталей для удобства замены потребителем изношенных деталей и сокращения номенклатуры потребных запасных частей.

Скважинные насосы исполнения НСВ1 предназначены для откачивания из нефтяных скважин маловязкой жидкости с содержанием механических примесей до 1,3 г/л и свободного газа на приёме насоса не более 10 %.

Насос состоит из составного цилиндра исполнения ЦС, на нижний конец которого навёрнут сдвоенный всасывающий клапан, а на верхний конец – замок, плунжера исполнения П1Х, подвижно расположенного внутри цилиндра, на резьбовые соединения которого навинчены: снизу – сдвоенный нагнетательный клапан, а сверху – клетка плунжера.

Для присоединения плунжера к колонне насосных штанг насос снабжён штоком, навинченным на клетку плунжера и закреплённый контргайкой. В расточке верхнего переводника цилиндра расположен упор, упираясь на который, плунжер обеспечивает срыв скважинного насоса с опоры. Клапаны насосов комплектуются парой «седло-шарик» исполнения КБ или К.

Скважинный насос спускается на колонне насосных штанг в колонну НКТ и закрепляется в опоре.

Принцип работы заключается в следующем. При ходе плунжера вверх в межклапанном пространстве цилиндра создаётся разряжение, за счёт чего открывается всасывающий клапан и происходит заполнение цилиндра. Последующим ходом плунжера вниз межклапанный объём сжимается, за счёт чего открывается нагнетательный клапан и поступившая в цилиндр жидкость перетекает в зону над плунжером. Периодические совершаемые плунжером перемещения вверх и вниз обеспечивают откачку пластовой жидкости и нагнетания ее на поверхность.

Конструктивно скважинные насосы состоят из цельного цилиндра исполнения ЦБ с всасывающим клапаном, навинченным на нижний конец. На всасывающий клапан навинчен упорный ниппель с конусом. На верхнем конце цилиндра расположен защитный клапан, предотвращающий осаждение песка в цилиндре при остановке насоса.

Внутри цилиндра подвижно установлен плунжер исполнения П1Х с нагнетательным клапаном на нижнем конце и клеткой плунжера на верхнем конце. Клапаны насосов комплектуются парой «седло-шарик» исполнения К или КБ. Для присоединения плунжера насоса к колонне насосных штанг насос снабжён штоком, навинченным на клетку плунжера и закреплённый контргайкой.

В расточке верхнего переводника цилиндра расположен упор. Насос спускается в колонну НКТ на колонне насосных штанг и закрепляется в опоре нижней частью при помощи ниппеля упорного с конусом. Такое закрепление насоса позволяет разгрузить от пульсирующих нагрузок. Это обстоятельство обеспечивает применение его на больших глубинах скважин.

Скважинные насосы исполнения НСН1 предназначены для откачивания из малодебитных, относительно неглубоких скважин маловязкой жидкости с содержанием механических примесей до 1,3 г/л и свободного газа до 10 % по объёму.

Конструктивно скважинные насосы состоят из составного цилиндра исполнения ЦС с седлом конуса на нижнем конце, в конусной расточке которого размещён всасывающий клапан. Внутри цилиндра подвижно расположен плунжер исполнения П1Х с навинченным на нижний конец наконечником, а на верхний конец – нагнетательным клапаном.

На всасывающий клапан навинчен захватный шток, располагающийся внутри плунжера.

Насосы диаметром 29, 32 и 44 мм. снабжены штоком для соединения колонны насосных штанг с плунжером, а у насосов диаметром 57 мм плунжер привинчивается к насосным штангам резьбой на нагнетательном клапане.

Длина хода плунжера насосов исполнения НСН1 составляет 900мм.

Принцип работы насоса НСН1 аналогичен принципу насоса НСВ1, однако цилиндр насоса НСН1 спускается на колонне НКТ, а плунжер с клапанами – на колонне насосных штанг. При подъёме штанг головка захватного штока упирается в наконечник плунжера и обеспечивает извлечение соединённого с ним всасывающего клапана для слива из колонны НКТ.

Головка балансира станка качалки

Процесс бурения скважины

Скважина 890 заложена согласно технологической схемы разработки терригенной пачки нижнего карбона Турнейского пласта Павловского месторождения утверждённой Центральной комиссией по разработке нефтяных месторождений. Скважина пробурена с целью эксплуатации залежей нефти Павловского месторождения Тунейского пласта.

Описание процесса освоения скважины

Устье скважин оборудовано арматурой тип.

ЭТГр БЗ 65х140 №419. Арматура отпрессована. Герметична.

25 июня 1989 года в скважине проведена кумулятивная перфорация ПКС-80 в интервале 1476,0-1492,0 м.(-1231,5-1247,5) всего сделано 288 отверстий.

В скважину спущены 73 мм. НКТ до глубины стоп – кольца.

Скважина освоена компрессором.

73 мм. НКТ спущено 154 трубы мерой 1458,45м.

В скважине в интервале перфорации сделана соляно – кислотная обработка с сульфатом аммония. За 2 часа, при Р=100 атм. закачено 12 м3. В процессе обработки давления колебалось от 150 до 90 атм. Скважина освоена компрессором. Получена нефть. Силами ЦНИПРА снята кривая восстановления давления до и после кислотной обработки.

29 августа скважина предана НДУ «Чернушканефть».

Оцените статью
Добавить комментарий

Adblock
detector