Во время лабораторных измерений требуется знать точность измерительных средств, которые в свою очередь обладают определенными характеристиками и различаются по устройству. Каждое из средств измерения (СИ) имеют определенные неточности, которые делится на основные и дополнительные. Зачастую возникают ситуации, когда нет возможности или просто не требуется производить подробный расчет. Каждому средству измерения присвоен определенный класс точности, зная который, можно выяснить его диапазон отклонений.
Вовремя выяснить ошибки измерительного средства помогут нормированные величины погрешностей. Под этим определением стоит понимать предельные, для измерительного средства показатели. Они могут быть разными по величине и зависеть от разных условий, но пренебрегать ими не стоит ни в коем случае, ведь это может привести к серьезной ошибке в дальнейшем. Нормированные значения должны быть меньше чем покажет прибор. Границы допустимых величин ошибок и необходимые коэффициенты вносятся в паспорт каждого замеряющего размеры устройства. Узнать подробные значения нормирования для любого прибора можно воспользовавшись соответствующим ГОСТом.
Класс точности измерительного прибора
Обобщающая характеристика, которая определяется пределами погрешностей (как основных, так и дополнительных), а также другими влияющими на точные замеры свойствами и показатели которых стандартизированы, называется класс точности измерительного аппарата. Класс точности средств измерений дает информацию о возможной ошибке, но одновременно с этим не является показателем точности данного СИ.
Средство измерения – это такое устройство, которое имеет нормированные метрологические характеристики и позволяет делать замеры определенных величин. По своему назначению они бывают примерные и рабочие. Первые используются для контроля вторых или примерных, имеющих меньший ранг квалификации. Рабочие используются в различных отраслях. К ним относятся измерительные:
- приборы;
- преобразователи;
- установки;
- системы;
- принадлежности;
- меры.
На каждом средстве для измерений имеется шкала, на которой указываются классы точности этих средств измерений. Они указываются в виде чисел и обозначают процент погрешности. Для тех, кто не знает, как определить класс точности, следует знать, что они давно стандартизованы и есть определенный ряд значений. Например, на устройстве может быть одна из следующих цифр: 6; 4; 2,5; 1,5; 1,0; 0,5; 0,2; 0,1; 0,05; 0,02; 0,01; 0,005; 0,002; 0,001. Если это число находится в круге, то это погрешность чувствительности. Обычно ее указывают для масштабных преобразователей, таких как:
- делители напряжения;
- трансформаторы тока и напряжения;
- шунты.
Обозначение класса точности
Обязательно указывается граница диапазона работы этого прибора, в пределах которой значение класса точности будет верно.
Те измерительные устройства, которые имеют рядом со шкалой цифры: 0,05; 0,1; 0,2; 0,5, именуются как прецизионные. Сфера их применения – это точные и особо точные замеры в лабораторных условиях. Приборы с маркировкой 1,0; 1,5; 2,5 или 4,0 называются технические и исходя из названия применяются в технических устройствах, станках, установках.
Возможен вариант, что на шкале такого аппарата не будет маркировки. В такой ситуации погрешность приведенную принято считать более 4%.
Если значение класса точности устройства не подчеркнуто снизу прямой линией, то это говорит о том, что такой прибор нормируется приведенной погрешностью нуля.
Грузопоршневой манометр, класс точности 0,05
Если шкала отображает положительные и отрицательные величины и отметка нуля находится посередине такой шкалы, то не стоит думать, что погрешность во всем диапазоне будет неизменной. Она будет меняться в зависимости от величины, которую измеряет устройство.
Если замеряющий агрегат имеет шкалу, на которой деления отображены неравномерно, то класс точности для такого устройства указывают в долях от длины шкалы.
Возможны варианты измерительных аппаратов со значениями шкалы в виде дробей. Числитель такой дроби укажет величину в конце шкалы, а число в знаменателе при нуле.
Нормирование
Классы точности средств измерений сообщают нам информацию о точности таких средств, но одновременно с этим он не показывает точность измерения, выполненного с помощью этого измерительного устройства. Для того, чтобы выявить заблаговременно ошибку показаний прибора, которую он укажет при измерении люди нормируют погрешности. Для этого пользуются уже известными нормированными значениями.й
Нормирование осуществляется по:
Формулы расчета абсолютной погрешности по ГОСТ 8.401
Каждый прибор из конкретной группы приспособлений для замера размеров имеет определенное значение неточностей. Оно может незначительно отличаться от установленного нормированного показателя, но не превышать общие показатели. Каждый такой агрегат имеет паспорт, в который записываются минимальные и максимальные величины ошибок, а также коэффициенты, оказывающие влияние в определенных ситуациях.
Все способы нормирования СИ и обозначения их классов точности устанавливаются в соответствующих ГОСТах.
Виды маркирования
Классы точности абсолютно всех измерительных приборов подлежат маркировке на шкале этих самых приборов в виде числа. Используются арабские цифры, которые обозначают процент нормированной погрешности. Обозначение класса точности в круге, например число 1,0, говорит о том, что ошибочность показаний стрелки аппарата будет равна 1%.
Если в обозначении используется кроме цифры еще и галочка, то это значит, что длина шкалы применяется в роли нормирующего значения.
Латинские буквы для обозначения применяются если он определяется пределами абсолютной погрешности.
Существуют аппараты, на шкалах которых нет информации о классе точности. В таких случаях абсолютную следует приравнивать к одной второй наименьшего деления.
Пределы
Как уже говорилось раньше, измерительный прибор, благодаря нормированию уже содержит случайную и систематические ошибки. Но стоит помнить, что они зависят от метода измерения, условий и других факторов. Чтобы значение величины, подлежащей замеру, было на 99% точным, средство измерения должно иметь минимальную неточность. Относительная должна быть примерно на треть или четверть меньше погрешности измерений.
Базовый способ определения погрешности
При установке класса точности в первую очередь нормированию подлежат пределы допустимой основной погрешности, а пределы допускаемой дополнительной погрешности имеют кратное значение от основной. Их пределы выражают в форме абсолютной, относительной и приведенной.
Приведенная погрешность средства измерения – это относительная, выраженная отношением предельно-допустимой абсолютной погрешности к нормирующему показателю. Абсолютная может быть выражена в виде числа или двучлена.
Если класс точности СИ будет определяться через абсолютную, то его обозначают римскими цифрами или буквами латиницы. Чем ближе буква будет к началу алфавита, тем меньше допускаемая абсолютная погрешность такого аппарата.
Класс точности 2,5
Благодаря относительной погрешности можно назначить класс точности двумя способами. В первом случае на шкале будет изображена арабская цифра в кружке, во втором случае дробью, числитель и знаменатель которой сообщают диапазон неточностей.
Основная погрешность может быть только в идеальных лабораторных условиях. В жизни приходится умножать данные на ряд специальных коэффициентов.
Дополнительная случается в результате изменений величин, которые каким-либо образом влияют на измерения (например температура или влажность). Выход за установленные пределы можно выявить, если сложить все дополнительные погрешности.
Случайные ошибки имеют непредсказуемые значения в результате того, что факторы, оказывающие на них влияние постоянно меняются во времени. Для их учета пользуются теорией вероятности из высшей математики и ведут записи происходивших раньше случаев.
Пример расчета погрешности
Статистическая измерительного средства учитывается при измерении какой-либо константы или же редко подверженной изменениям величины.
Динамическая учитывается при замерах величин, которые часто меняют свои значения за небольшой отрезок времени.
Классы точности болтов
Болты и другие крепежные изделия изготавливают нескольких классов:
Каждый из них имеет свои допуски измеряемой величины, отличные от остальных и применяется в различных сферах.
Крепеж С используют в отверстиях с диаметром немногим больше диаметра болта (до 3мм). Болты без труда устанавливаются, не отнимая много времени на работу. Из минусов стоит отметить то, что при физическом воздействии на такой крепеж, болтовое соединение может сместиться на несколько миллиметров.
Крепеж В подразумевает использование болтов, диаметр которых меньше отверстия в пределах 1-1,5 мм. Это позволяет конструкции меньше подвергаться смещениям и деформациям, но повышаются требования к изготовлению отверстий в креплениях.
Гайки шестигранные класса точности В
Крепеж А создается по проекту. Диаметр болта такого типа, меньше диаметра отверстия максимум на 0,3 мм и имеет допуск только со знаком минус. Это делает крепеж неподвижным, не позволяет происходить смещению узлов. Изготовление болтов А-класса стоит дороже и не всегда используется в производстве.
Класс точности присутствует в описании всех измерительных приборов и является одной из самых важных характеристик. Чем выше его значение, тем более дорогостоящий будет прибор, но в то же время он сможет предоставить более точную информацию. Выбор стоить делать исходя из сложившейся ситуации и целей в которых будет использоваться такое средство. Важно понимать, что в некоторых ситуациях экономически выгодно будет приобрести дорогостоящее сверхточное оборудование, чтобы в дальнейшем сберечь деньги.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Класс точности определяет гарантированные границы, за пределы которых не выходит погрешность прибора в установленном для него диапазоне измерений.
Класс точности КТ электромеханических стрелочных измерительных приборов нормируют в виде процентного отношения предела Хмакс (гарантированных границ) абсолютной погрешности прибора, к нормирующему значению Хнорм его шкалы:
(2)
где нормирующим значением Хнорм для приборов с равномерной шкалой служит верхний предел измеряемой прибором величины, а для приборов с неравномерной шкалой – длина её рабочей части, т.е. длина участка между отметками шкалы, соответствующими диапазону измерений прибора.
Для электромеханических стрелочных измерительных приборов установлены следующие цифры классов точности: 0,05; 0,1; 0,2; 0,5 (для лабораторных приборов) и 1;.1,5; 2,5; 4 (для технических приборов).
Цифра класса точности прибора указывается на его шкале. Для приборов с равномерной шкалой эта цифра указывается без каких-либо знаков (кружков, квадратов, звёздочек), например, 2,5. Для приборов с неравномерной шкалой цифра класса точности подчеркивается ломаной линией, например, 2,5.
По формуле (2) класса точности прибора проводят оценку предельно допустимого значения его абсолютной погрешности. Такая оценка необходима для определения погрешности результата измерения, выполняемого прибором, а также для выбора прибора, обеспечивающего требуемую точность измерений.
Расчет предела абсолютной погрешности прибора с равномерной шкалой проводится непосредственно по формуле (2) класса точности, а для приборов с неравномерной шкалой по формуле (2) сначала определяется погрешность прибора в единицах длины (мм) шкалы, а затем по ней и чувствительности прибора рассчитывается абсолютная погрешность в единицах измеряемой величины.
Пример 1. Определить предел DIмакс абсолютной погрешности амперметра, который имеет равномерную шкалу, верхний предел измеряемого тока Iмакс = 5А и класс точности КТ =1.
Решение.1. Прибор имеет равномерную шкалу, следовательно, нормирующим значением в формуле (2) его класса точности является верхний предел измеряемого тока 1макс = 5 А.
2. Предел абсолютной погрешности амперметра находится непосредственно из формулы (2):
.
Пример 2. Определить предел DRмакс абсолютной погрешности омметра с неравномерной шкалой в трёх её точках (начале, середине и конце), если диапазон измерений прибора лежит в пределах от 3 до 300 кОм, длина рабочего участка шкалы (т.е. между отметками 3 и 300) составляет Lp = 60мм, класс точности Кт=2,5, чувствительность прибора в начале, середине к конце рабочего участка шкалы соответственно равна Sн = 10 мм/нОм , Sс =1 мм/ нОм к Sк = 0,1 мм/кОм.
Решение.1. Прибор имеет неравномерную шкалу, следовательно, нормирующим значением в формуле (2) его класса точности является длина рабочего участка Lp = 60 мм.
2. По формуле (2) класса точности омметра определяется предел DLмакс его абсолютной погрешности, выраженный в единицах длины шкалы:
мм
3. Предел DRмакс абсолютной погрешности омметра в единицах измеряемой величины (т.е.
кОм;
кОм;
кОм.
Пример 3. Определить пределы абсолютной DIмакс и относительной dмакс погрешностей результата измерения тока амперметром, у которого верхний предел измерения Iмакс = 5А, класс точности КТ =1, шкала равномерная. Показание амперметра при измерении равно Iизм = 3А.
Решение. 1. Предел DIмакс абсолютной погрешности результата измерения определяется пределом абсолютной погрешности прибора, который находится по классу точности прибора:
.
2. Предел относительной погрешности результата измерения
%
Примечание. Как следует из примера, предел относительной погрешности результата измерения будет возрастать с уменьшением уровня измеряемой величины. Следовательно, относительная погрешность получаемых результатов измерения будет близка к наименьшему своему возможному значению, равному цифре класса точности прибора, только в случае, если измеряемая величина близка к верхнему пределу измерения прибора.
2.7.Выбор приборов для измерений
Основными метрологическими характеристиками прибора, определяющими погрешность результата измерения, являются верхний предел измерения и класс точности.
Верхний предел измерения прибора влияет, как видно из примера 3, на относительную погрешность получаемого результата измерения. Эта погрешность возрастает с уменьшением уровня измеряемой величины. Следовательно, приборы необходимо подбирать таким образом, чтобы их верхний предел измерения был как можно ближе к уровню измеряемой величины. В этом случае относительная погрешность получаемого результата измерения будет близка к наименьшему своему значению, равному цифре класса точности прибора.
Класс точности определяет способность прибора "улавливать" флуктуации измеряемой величины. К таким флуктуациям, например, относится технологический разброс параметров технических изделий, т.е. неповторимость параметров отдельных изделий одного вида. (Этот разброс обусловлен несовершенством технологии изготовления изделий.)
Флуктуации измеряемой величины и погрешность отдельного прибора носят случайный характер и между собой не коррелированы (не взаимосвязаны).
(3)
Точность "улавливания" флуктуации DXф измеряемой величины повышается с уменьшением погрешности DХп прибора. Однако, следует иметь в виду, что приборы с меньшей погрешностью имеют более высокую стоимость. Поэтому выбор приборов с меньшей погрешностью целесообразен до тех пор, пока уменьшение погрешности DХп оказывает существенное влияние на величину DХи. Отмеченное обстоятельство иллюстрируется графиком (рис.3) зависимости (3), представленной в виде
,
где составляющие DХи и DХп выражены относительно флуктуации DXф, которая является независимой величиной. Из графика видно, что в зоне DХп/DXф = 0,3 ¸ 0,5 отношение DХи/DХф практически не изменяется. Следовательно, при выборе прибора по классу точности целесообразно использовать условие
Рис. 3 – Зависимость погрешности результата измерения
от погрешности прибора
Пример 4. Выбрать вольтметр, обеспечивавший удовлетворительную точность результата измерения выходного напряжения Uвых = 20 В блока питания, которое из-за технологического разброса параметров составных элементов блока может изменяться на ±1 % от указанного значения.
Решение.1. Выбор вольтметра заключается в определении его верхнего предела измерения и класса точности.
2. Верхний предел измерения вольтметра выбирается, как было отмечено в разд. 2.7, наиболее близким к уровню измеряемой величины.
У стандартных электромеханических вольтметров наиболее близким к уровню измеряемого напряжения Uвых = 20 является верхний предел измерения Uv макс = 30 В.
3. В рассматриваемом примере технологический разброс DUвых выходного напряжения блока питания составляет ±1 % от среднего значения 20 В:
В
4. Согласно указанному в разделе 2.7 правилу, предел Uv макс = 30 В абсолютной погрешности вольтметра должен удовлетворять условию
5. Класс точности КТ выбираемого вольтметра, определяется по формуле (2):
Среди стандартных электромеханических вольтметров указанному условию удовлетворяет прибор с классом точности 0,2.
6. Заключение: для измерения выходного, напряжения блока питания выбираем вольтметр с верхним пределом измерения Uv макс = 30В и классом точности КТ = 0,2.
Способы нормирования допускаемых погрешностей:
– по абсолютной погрешности,
– по относительной погрешности,
– по приведенной погрешности – по длине или верхнему пределу шкалы прибора.
Обозначения классов точности измерительных приборов:
– арабскими цифрами без условных знаков – класс точности определяется пределами приведённой погрешности, в качестве нормирующего значения используется наибольший по модулю из пределов измерений.
– арабскими цифрами с галочкой, то класс точности определяется пределами приведённой погрешности, но в качестве нормирующего значения используется длина шкалы.
По приведенной погрешности приборы делятся на классы (8 классов стрелочных приборов): 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0.
Приборы класса точности 0,05; 0,1; 0,2; 0,5 применяются для точных лабораторных измерений и называются прецизионными.
В технике применяются приборы классов 1,0; 1,5: 2,5 и 4,0 (технические).
Если на шкале такого обозначения нет, то данный прибор внеклассный, то есть его приведенная погрешность превышает 4%.
– арабскими цифрами в кружке – класс точности определяется пределами относительной погрешности.
– латинскими буквами, то класс точности определяется пределами абсолютной погрешности.
Когда на приборе класс точности не указан, абсолютная погрешность принимается равной половине цены наименьшего деления. При считывании показаний со шкалы нецелесообразно стараться определить доли деления, так как результат измерения от этого не станет точнее.
КАК ВЫЧИСЛИТЬ ПОГРЕШНОСТЬ
Класс точности определяется как отношение той или иной погрешности к точному значению.
Абсолютную можно представить в виде разности между точным и приблизительным значениями х и а, в виде формулы s=(x-a)
Относительная определяется как отношение этой же разнице к величине а,
а приведенная – к длине шкалы l. Умножьте полученный результат на 100%.