- Обозначение источника (стабилизатора, генератора) тока на схемах
- Типичные реализации источника, генератора тока
- Расчет транзисторного источника тока
- Нормативные документы
- Виды электрических схем
- Графические обозначения
- Примеры УГО в функциональных схемах
- УГО в однолинейных и полных электросхемах
- Линии связи
- Обозначения электромеханических приборов и контактных соединений
- УГО электромашин
- УГО трансформаторов и дросселей
- Обозначение измерительных приборов и радиодеталей
- УГО осветительных приборов
- Обозначение элементов в монтажной схеме электропроводки
- Буквенные обозначения
Многие современные электроустройства для своей стабильной работы требуют поддержания уровня напряжения на определенно заданном уровне, то есть его стабилизации. Общеизвестный пример – холодильник или кондиционер.
Кроме всего прочего есть и другие причины, требующие стабилизации напряжения, а иногда и тока. Так, например, при предельно высоком напряжении срок службы некоторых деталей в электротехнических устройствах резко снижается. Так и при изменении напряжения меняются и характеристики полупроводниковых приборов, которые способны расстроить работу устройств.
Стабилизация электрического тока достигается многими способами. В данной статье рассматриваются самые распространенные обозначения, которые наиболее часто употребляются в схемах.
Феррорезонансный стабилизатор. Данный вид стабилизатора на схемах обозначается практически также как и трансформатор с нелинейным регулированием – № 1 . (Подробнее об обозначениях трансформаторов). Кроме того его позиционное обозначение укажет на то, что это стабилизатор. Для того, чтобы указать подробнее внутренние соединения используется обозначение под № 2 .
Здесь, изображение указывает на то, что в сборке присутствуют 2 трансформатора. Где первичные обмотки соединены последовательно – точки, которые обозначают начало обмотки, расположены с одной стороны, а вторички встречно – точки расположены с разных сторон. Ломаная красная черта обозначает нелинейное регулирование.
Полупроводниковые стабилизаторы – стабилитроны (диоды лавинные выпрямители). № 3 – односторонний полупроводниковый стабилизатор, № 4 – двусторонний полупроводниковый стабилизатор.
Ионные стабилизаторы приведены на иллюстрации № 5 . Где « А » – анод, « К » – катод, « Г » – газовый наполнитель.
На рисунке №№ 6-8 приведены примеры упрощенных изображений стабилизаторов. № 6 – простой стабилизатор, на что указывают буквы « * ST », № 7 – стабилизатор напряжения, на что указывает буква « U », № 8 – стабилизатор тока – « I ». Звездочка перед буквенными обозначениями указывает, что стабилизатор – нелогический элемент.
Устройство и принцип действия источника стабильного тока. (10+)
Источник тока. Принцип действия. Расчет
Источники стабильного тока применяются, когда нужно обеспечить заданный ток вне зависимости от напряжения и сопротивления нагрузки. Источник (генератор) тока обладает большим дифференциальным сопротивлением.
Это означает, что сила тока через генератор тока в рабочем режиме мало зависит от напряжения на нем. В идеале дифференциальное сопротивление источника тока должно быть равно бесконечности, то есть ток не должен зависеть от напряжения. Реальные источники тока обладают дифференциальным сопротивлением от 1 МОм.
Обозначение источника (стабилизатора, генератора) тока на схемах
Вашему вниманию подборки материалов:
Конструирование источников питания и преобразователей напряжения Разработка источников питания и преобразователей напряжения. Типовые схемы. Примеры готовых устройств. Онлайн расчет. Возможность задать вопрос авторам
Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам
Типичные реализации источника, генератора тока
Приведенные схемы обладают рядом серьезных недостатков. Схема A1 на полевом транзисторе – одна из худших реализаций. Рассчитать ее параметры невозможно, так как они зависят от индивидуальных особенностей экземпляра полевого транзистора.
Нужный ток устанавливается подбором резистора. Схема может функционировать, когда сопротивление резистора равно 0. Дифференциальное сопротивление (а значит стабильность тока) схемы невысоко, нередко оно бывает меньше 200 кОм.
На работу этого варианта сильно влияет температура полевого транзистора. Преимущество одно – это действительно двухполюсник. Он не требует подвода дополнительного питания. Это бывает очень важно в некоторых схемах.
Схема A2 обладает гораздо лучшими характеристиками. В случае применения транзисторов с большим коэффициентом передачи тока, схема может иметь дифференциальное сопротивление выше 1 МОм (10 МОм, или даже больше). Но вывода у схемы не два, а три.
Так что она может быть включена только в некоторые электронные схемы, в которых один вывод источника тока подключен к шине питания или общему проводу, и есть возможность подвести к одному из выводов общий провод или питание соответственно. На рисунке приведена схема с подключением к шине питания.
Схема с подключением к общему проводу выглядит совершенно аналогично с той разницей, что ее надо перевернуть и поменять проводимость транзистора и полярность стабилитрона.
Обратите внимание, что в схеме в качестве источника опорного напряжения используется стабилитрон. Для стабилитронов характерна зависимость напряжения стабилизации от температуры. Помните об этом при проектировании источников тока. Стабилитрон может быть источником шумов. Чтобы уменьшить их влияние на работу устройства параллельно стабилитрону можно подключить керамический конденсатор емкость 0.1 мкФ.
Расчет транзисторного источника тока
Принцип действия приведенной схемы основан на том, что напряжение на резисторе R1 поддерживается равным напряжению на стабилитроне минус напряжение насыщения эмиттерного перехода транзистора.
Напряжение на резисторе пропорционально току нагрузки. Так что этот ток также поддерживается на заданном уровне. Если ток нагрузки падает, то напряжение на резисторе также падает. Ток базы транзистора растет, что приводит к открытию транзистора и росту тока. Если ток нагрузки растет, то транзистор наоборот закрывается.
Ориентировочный расчет транзисторного источника тока можно выполнить так. Выбираем стабилитрон. Вычисляем напряжение на резисторе R1.
[Напряжение на резисторе R1, В] = [Напряжение стабилизации стабилитрона, В] – [Напряжение насыщения эмиттерного перехода транзистора, В]
Исходя из необходимой силы тока, определяем сопротивление резистора R1.
[Сопротивление резистора R1, Ом] = [Напряжение на резисторе R1, В] / [Необходимая сила тока источника, А]
[Сопротивление резистора R2, Ом] = 0.8 * ([Напряжение питания, В] – [Напряжение стабилизации стабилитрона, В]) * [Коэффициент передачи тока транзистора] / [Необходимая сила тока источника, А]
[Максимально возможное напряжение на нагрузке, В] = [Напряжение питания, В] – [Напряжение на резисторе R1, В] – [Напряжение насыщения коллектор – эмиттер транзистора, В]
[Мощность транзистора, Вт] = ([Напряжение питания, В] – [Напряжение на резисторе R1, В]) * [Необходимая сила тока источника, А]
[Мощность стабилитрона, Вт] = 0.25 * [Необходимая сила тока источника, А] * [Напряжение стабилизации стабилитрона, В] / [Коэффициент передачи тока транзистора]
[Мощность резистора R1, Вт] = [Напряжение на резисторе R1, В] * [Необходимая сила тока источника, А]
[Мощность резистора R2, Вт] = ([Напряжение питания, В] – [Напряжение стабилизации стабилитрона, В]) ^ 2 / [Сопротивление резистора R2, Ом]
К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.
Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи.
Составной транзистор. Схемы Дарлингтона, Шиклаи. Расчет, применение.
Составной транзистор – схемы, применение, расчет параметров. Схемы Дарлингтона, .
Токовое управление. Транзисторная схемотехника, схема. Ток. Электроник.
Усилитель ВЧ. Пример схемы специально для биполярного транзистора. Схемотехничес.
Простой импульсный прямоходовый преобразователь напряжения. 5 – 12 вол.
Схема простого преобразователя напряжения для питания операционного усилителя.
Транзисторы КТ502, 2Т502. Справочник, справочные данные, параметры, цо.
Характеристики и применение биполярных транзисторов КТ502 (КТ502А, КТ502Б, КТ502.
Любые электрические цепи могут быть представлены в виде чертежей (принципиальных и монтажных схем), оформление которых должно соответствовать стандартам ЕСКД. Эти нормы распространяются как на схемы электропроводки или силовых цепей, так и электронные приборы. Соответственно, чтобы «читать» такие документы, необходимо понимать условные обозначения в электрических схемах.
Нормативные документы
Учитывая большое количество электроэлементов, для их буквенно-цифровых (далее БО) и условно графических обозначений (УГО) был разработан ряд нормативных документов исключающих разночтение. Ниже представлена таблица, в которой представлены основные стандарты.
Таблица 1. Нормативы графического обозначения отдельных элементов в монтажных и принципиальных электрических схемах.
Номер ГОСТа | Краткое описание |
2.710 81 | В данном документе собраны требования ГОСТа к БО различных типов электроэлементов, включая электроприборы. |
2.747 68 | Требования к размерам отображения элементов в графическом виде. |
21.614 88 | Принятые нормы для планов электрооборудования и проводки. |
2.755 87 | Отображение на схемах коммутационных устройств и контактных соединений |
2.756 76 | Нормы для воспринимающих частей электромеханического оборудования. |
2.709 89 | Настоящий стандарт регулирует нормы, в соответствии с которыми на схемах обозначаются контактные соединения и провода. |
21.404 85 | Схематические обозначения для оборудования, используемого в системах автоматизации |
Следует учитывать, что элементная база со временем меняется, соответственно вносятся изменения и в нормативные документы, правда это процесс более инертен. Приведем простой пример, УЗО и дифавтоматы широко эксплуатируются в России уже более десятка лет, но единого стандарта по нормам ГОСТ 2.755-87 для этих устройств до сих пор нет, в отличие от автоматических выключателей.
Вполне возможно, в ближайшее время это вопрос будет урегулирован. Чтобы быть в курсе подобных нововведений, профессионалы отслеживают изменения в нормативных документах, любителям это делать не обязательно, достаточно знать расшифровку основных обозначений.
Виды электрических схем
В соответствии с нормами ЕСКД под схемами подразумеваются графические документы, на которых при помощи принятых обозначений отображаются основные элементы или узлы конструкции, а также объединяющие их связи. Согласно принятой классификации различают десять видов схем, из которых в электротехнике, чаще всего, используется три:
- Функциональная, на ней представлены узловые элементы (изображаются как прямоугольники), а также соединяющие их линии связи. Характерная особенность такой схемы – минимальная детализация. Для описания основных функций узлов, отображающие их прямоугольники, подписываются стандартными буквенными обозначениями. Это могут быть различные части изделия, отличающиеся функциональным назначением, например, автоматический диммер с фотореле в качестве датчика или обычный телевизор. Пример такой схемы представлен ниже.
Пример функциональной схемы телевизионного приемника
- Принципиальная. Данный вид графического документа подробно отображает как используемые в конструкции элементы, так и их связи и контакты. Электрические параметры некоторых элементов могут быть отображены, непосредственно в документе, или представлены отдельно в виде таблицы.
Пример принципиальной схемы фрезерного станка
Если на схеме отображается только силовая часть установки, то она называется однолинейной, если приведены все элементы, то – полной.
Пример однолинейной схемы
- Монтажные электрические схемы. В данных документах применяются позиционные обозначения элементов, то есть указывается их место расположения на плате, способ и очередность монтажа.
Монтажная схема стационарного сигнализатора горючих газов
Если на чертеже отображается проводка квартиры, то места расположения осветительных приборов, розеток и другого оборудования указываются на плане. Иногда можно услышать, как такой документ называют схемой электроснабжения, это неверно, поскольку последняя отображает способ подключения потребителей к подстанции или другому источнику питания.
Разобравшись с электрическими схемами, можем переходить к обозначениям указанных на них элементов.
Графические обозначения
Для каждого типа графического документа предусмотрены свои обозначения, регулируемые соответствующими нормативными документами. Приведем в качестве примера основные графические обозначения для разных видов электрических схем.
Примеры УГО в функциональных схемах
Ниже представлен рисунок с изображением основных узлов систем автоматизации.
Примеры условных обозначений электроприборов и средств автоматизации в соответствии с ГОСТом 21.404-85
Описание обозначений:
- А – Основные (1) и допускаемые (2) изображения приборов, которые устанавливаются за пределами электрощита или распределительной коробки.
- В – Тоже самое, что и пункт А, за исключением того, что элементы располагаются на пульте или электрощите.
- С – Отображение исполнительных механизмов (ИМ).
- D – Влияние ИМ на регулирующий орган (далее РО) при отключении питания:
- Происходит открытие РО
- Закрытие РО
- Положение РО остается неизменным.
- Е – ИМ, на который дополнительно установлен ручной привод. Данный символ может использоваться для любых положений РО, указанных в пункте D.
- F- Принятые отображения линий связи:
- Общее.
- Отсутствует соединение при пересечении.
- Наличие соединения при пересечении.
УГО в однолинейных и полных электросхемах
Для данных схем существует несколько групп условных обозначений, приведем наиболее распространенные из них. Для получения полной информации необходимо обратиться к нормативным документам, номера государственных стандартов будут приведены для каждой группы.
Источники питания.
Для их обозначения приняты символы, приведенные на рисунке ниже.
УГО источников питания на принципиальных схемах (ГОСТ 2.742-68 и ГОСТ 2.750.68)
Описание обозначений:
- A – источник с постоянным напряжением, его полярность обозначается символами «+» и «-».
- В – значок электричества, отображающий переменное напряжение.
- С – символ переменного и постоянного напряжения, используется в тех случаях, когда устройство может быть запитано от любого из этих источников.
- D – Отображение аккумуляторного или гальванического источника питания.
- E- Символ батареи, состоящей из нескольких элементов питания.
Линии связи
Базовые элементы электрических соединителей представлены ниже.
Обозначение линий связи на принципиальных схемах (ГОСТ 2.721-74 и ГОСТ 2.751.73)
Описание обозначений:
- А – Общее отображение, принятое для различных видов электрических связей.
- В – Токоведущая или заземляющая шина.
- С – Обозначение экранирования, может быть электростатическим (помечается символом «Е») или электромагнитным («М»).
- D – Символ заземления.
- E – Электрическая связь с корпусом прибора.
- F – На сложных схемах, из нескольких составных частей, таким образом обозначается обрыв связи, в таких случаях «Х» это информация о том, где будет продолжена линия (как правило, указывается номер элемента).
- G – Пересечение с отсутствием соединения.
- H – Соединение в месте пересечения.
- I – Ответвления.
Обозначения электромеханических приборов и контактных соединений
Примеры обозначения магнитных пускателей, реле, а также контактов коммуникационных устройств, можно посмотреть ниже.
УГО, принятые для электромеханических устройств и контакторов (ГОСТы 2.756-76, 2.755-74, 2.755-87)
Описание обозначений:
- А – символ катушки электромеханического прибора (реле, магнитный пускатель и т.д.).
- В – УГО воспринимающей части электротепловой защиты.
- С – отображение катушки устройства с механической блокировкой.
- D – контакты коммутационных приборов:
- Замыкающие.
- Размыкающие.
- Переключающие.
- Е – Символ для обозначения ручных выключателей (кнопок).
- F – Групповой выключатель (рубильник).
УГО электромашин
Приведем несколько примеров, отображения электрических машин (далее ЭМ) в соответствии с действующим стандартом.
Обозначение электродвигателей и генераторов на принципиальных схемах (ГОСТ 2.722-68)
Описание обозначений:
- A – трехфазные ЭМ:
- Асинхронные (ротор короткозамкнутый).
- Тоже, что и пункт 1, только в двухскоростном исполнении.
- Асинхронные ЭМ с фазным исполнением ротора.
- Синхронные двигатели и генераторы.
- B – Коллекторные, с питанием от постоянного тока:
- ЭМ с возбуждением на постоянном магните.
- ЭМ с катушкой возбуждения.
Обозначение электродвигателей на схемах
УГО трансформаторов и дросселей
С примерами графических обозначений данных устройств можно ознакомиться на представленном ниже рисунке.
Правильные обозначения трансформаторов, катушек индуктивности и дросселей (ГОСТ 2.723-78)
Описание обозначений:
- А – Данным графическим символом могут быть обозначены катушки индуктивности или обмотки трансформаторов.
- В – Дроссель, у которого имеется ферримагнитный сердечник (магнитопровод).
- С – Отображение двухкатушечного трансформатора.
- D – Устройство с тремя катушками.
- Е – Символ автотрансформатора.
- F – Графическое отображение ТТ (трансформатора тока).
Обозначение измерительных приборов и радиодеталей
Краткий обзор УГО данных электронных компонентов показан ниже. Тем, кто хочет более широко ознакомиться с этой информацией рекомендуем просмотреть ГОСТы 2.729 68 и 2.730 73.
Примеры условных графических обозначений электронных компонентов и измерительных приборов
Описание обозначений:
- Счетчик электроэнергии.
- Изображение амперметра.
- Прибор для измерения напряжения сети.
- Термодатчик.
- Резистор с постоянным номиналом.
- Переменный резистор.
- Конденсатор (общее обозначение).
- Электролитическая емкость.
- Обозначение диода.
- Светодиод.
- Изображение диодной оптопары.
- УГО транзистора (в данном случае npn).
- Обозначение предохранителя.
УГО осветительных приборов
Рассмотрим, как на принципиальной схеме отображаются электрические лампы.
Пример того, как указываются лампочки на схемах (ГОСТ 2.732-68)
Описание обозначений:
- А – Общее изображение ламп накаливания (ЛН).
- В – ЛН в качестве сигнализатора.
- С – Типовое обозначение газоразрядных ламп.
- D – Газоразрядный источник света повышенного давления (на рисунке приведен пример исполнения с двумя электродами)
Обозначение элементов в монтажной схеме электропроводки
Завершая тему графических обозначений, приведем примеры отображения розеток и выключателей.
Пример изображения на монтажных схемах розеток скрытой установки
Как изображаются розетки других типов, несложной найти в нормативных документах, которые доступны в сети.
Обозначение выключатели скрытой установки
Обозначение розеток и выключателей
Буквенные обозначения
В электрических схемах помимо графических обозначений также используются буквенные, поскольку без последних чтение чертежей будет довольно проблематичным. Буквенно-цифровая маркировка так же, как и УГО регулируется нормативными документами, для электро это ГОСТ 7624 55. Ниже представлена таблица с БО для основных компонентов электросхем.
Буквенные обозначения основных элементов
К сожалению, размеры данной статьи не позволяют привести все правильные графические и буквенные обозначения, но мы указали нормативные документы, из которых можно получить всю недостающую информацию. Следует учитывать, что действующие стандарты могут меняться в зависимости от модернизации технической базы, поэтому, рекомендуем отслеживать выход новых дополнений к нормативным актам.