Полезная статья объяснит и наглядно покажет пример программирования DS1821.
Порог температуры включения и отключения термостата задается значениями TH и TL в памяти датчика, которые требуется запрограммировать в DS1821. В случае превышения температуры выше значения записанного в ячейку TH на выходе датчика появится уровень логической единицы. Для защиты от возможных помех, схема управления нагрузкой реализована так, что первый транзистор запирается в ту полуволну сетевого напряжения, когда оно равно нулю, подавая тем самым напряжение смещения на затвор второго полевого транзистора, который включает оптосимистор, а тот уже открывает смистор VS1 управляющий нагрузкой. В качестве нагрузки может быть любое устройство , например электродвигатель или обогреватель. Надежность запирания первого транзистора нужно настроить путем подбора нужного номинала резистора R5.
Датчик температуры DS1820 способен фиксировать температуру от -55 до 125 градусов и работать в режиме термостата.
Если температуры превысит верхний порог TH, то на выходе DS1820 будет логическая единица, нагрузка отключится сети. Если температура опустится ниже нижнего запрограммированного уровня TL то на выходе температурного датчика появится логический ноль и нагрузка будет включена. Если остались непонятные моменты, самодельная конструкция была позаимствована из журнала Схемотехника №2 за 2006 год.
Сигнал с датчика проходит на прямой вывод компаратора на операционном усилителе CA3130. На инвертирующий вход этого же ОУ, поступает опорное напряжение с делителя. Переменным сопротивлением R4 задают требуемый температурный режим.
Если на прямом входе потенциал ниже установленного на выводе 2, то на выходе компаратора будем иметь уровень, около 0,65 вольта, а если наоборот, то на выходе компаратора получим высокий уровень около 2,2 вольта. Сигнал с выхода ОУ через транзисторы управляет работой электромагнитного реле. При высоком уровне оно включается, а при низком выключается, коммутируя своими контактами нагрузку.
TL431 – это программируемый стабилитрон. Используется в роли источника опорного напряжения и источника питания для схем с малым потреблением. Требуемый уровень напряжения, на управляющем выводе микросборки TL431, задается с помощью делителя на резисторах Rl, R2 и терморезисторе с отрицательным ТКС R3.
Если на управляющем выводе TL431 напряжение выше 2,5В, микросхема пропускает ток и включает электромагнитное реле. Реле коммутирует управляющий вывод симистора и подключает нагрузку. С увеличением температуры, сопротивление термистора и потенциал на управляющем контакте TL431 снижается ниже 2,5В, реле отпускает свои фронтовые контакты и отключает обогреватель.
С помощью сопротивления R1 регулируем уровень нужной температуры, для включения обогревателя. Данная схема способна управлять нагревательным элементом до 1500 Вт. Реле подойдет РЭС55А с рабочим напряжением 10…12 В или его аналог.
Конструкция аналогового терморегулятора используется для поддержания заданной температуры внутри инкубатора, или в ящике на балконе для хранения овощей зимой. Питание организовано от автомобильного аккумулятора на 12 вольт.
Конструкция состоит из реле в случае падения температуры и отключает при повышении заложенного порога.
Температура, срабатывания реле термостата задается уровнем напряжения на контактах 5 и 6 микросхемы К561ЛЕ5, а температура отключения реле – потенциалом на выводах 1 и 21. Разницу температур контролируется падением напряжения на резисторе R3. В роли температурного датчика R4 используется терморезистор с отрицательным ТКС, т.е термистор.
Конструкция небольшая и состоит всего из двух блоков- измерительного на базе компаратора на ОУ 554СА3 и коммутатора нагрузки до 1000 Вт построенного на регуляторе мощности КР1182ПМ1.
На третий прямой вход ОУ поступает постоянное напряжение с делителя напряжения состоящего из сопротивлений R3 и R4. На четвертый инверсный вход подается напряжение с другого делителя на сопротивлении R1 и терморезистор ММТ-4 R2.
Датчиком температуры является терморезистор находящейся в стеклянной колбе с песком, которую располагают в аквариуме. Главным узлом конструкции является м/с К554САЗ – компаратор напряжения.
От делителя напряжений в состав которого входит и терморезистор, управляющее напряжение идет на прямой вход компаратора. Другой вход компаратора используется для регулировки требуемой температуры. Из сопротивлений R3, R4, R5 выполнен делитель напряжения, который образуют чувствительный к изменениям температуры мост. При изменяется температуры воды в аквариуме, сопротивление терморезистора тоже меняется. Это создает дисбаланс напряжений на входах компаратора.
В зависимости от разности напряжений на входах будет изменяться выходное состояние компаратора. Нагреватель сделан так, что при снижении температуры воды терморегулятор аквариума автоматически запускался, а при повышении, наоборот выключался. Компаратор имеет два выхода, коллекторный и эмиттерный. Для управления полевым транзистором требуется положительное напряжение, поэтому, именно коллекторный выход компаратора подключен к плюсовой линии схемы. Управляющий сигнал получается с эмиттерного вывода. Сопротивления R6 и R7 являются выходной нагрузки компаратора.
Для включения и выключения нагревательного элемента в терморегуляторе использован полевой транзистор IRF840. Для разряда затвора транзистора присутствует диод VD1.
В схеме терморегулятора использован бестрансформаторный блок питания. Лишнее переменное напряжение уменьшается за счет реактивного сопротивления емкости С4.
Основа первой конструкции терморегулятора – микроконтроллер PIC16F84A с датчик температуры DS1621 обладающим интерфейс l2C. В момент включения питания, микроконтроллер сначала инициализирует внутренние регистры температурного датчика, а затем проводит его настройку. Терморегулятор на микроконтроллере во втором случае выполнен уже на PIC16F628 с датчиком DS1820 и управляет подключенной нагрузкой с помощью контактов реле.
Зависимость падения напряжения на p-n переходе полупроводников от температуры, как нельзя лучше подходит для создания нашего самодельного датчика.
Немного теории
Простейшие измерительные датчики, в том числе и реагирующие на температуру, состоят из измерительного полуплеча из двух сопротивлений, опорного и элемента, меняющего свое сопротивление в зависимости от прилаживаемой к нему температуры. Более наглядно это представлено на картинке ниже.
Как видно из схемы, резистор R2 является измерительным элементом самодельного терморегулятора, а R1, R3 и R4 опорным плечом устройства. Это терморезистор. Он представляет собой проводниковый прибор, который изменяет своё сопротивление при изменении температуры.
Элементом терморегулятора, реагирующим на изменение состояния измерительного плеча, является интегральный усилитель в режиме компаратора. Данный режим переключает скачком выход микросхемы из состояния выключено в рабочее положение. Таким образом, на выходе компаратора мы имеем всего два значения «включено» и «выключено». Нагрузкой микросхемы является вентилятор для ПК. При достижении температуры определенного значения в плече R1 и R2 происходит смещение напряжения, вход микросхемы сравнивает значение на контакте 2 и 3 и происходит переключение компаратора. Вентилятор охлаждает необходимый предмет, его температура падает, сопротивление резистора меняется и компаратор отключает вентилятор. Таким образом поддерживается температура на заданном уровне, и производится управление работой вентилятора.
Обзор схем
Напряжение разности с измерительного плеча поступает на спаренный транзистор с большим коэффициентом усиления, а в качестве компаратора выступает электромагнитное реле. При достижении на катушке напряжения, достаточного для втягивания сердечника, происходит ее срабатывание и подключение через ее контакты исполнительных устройств. При достижении заданной температуры, сигнал на транзисторах уменьшается, синхронно падает напряжение на катушке реле, и в какой-то момент происходит расцепление контактов и отключение полезной нагрузки.
Особенностью такого типа реле является наличие гистерезиса — это разница в несколько градусов между включением и отключением самодельного терморегулятора, из-за присутствия в схеме электромеханического реле. Таким образом, температура всегда будет колебаться на несколько градусов возле нужного значения. Вариант сборки, предоставленный ниже, практически лишен гистерезиса.
Принципиальная электронная схема аналогового терморегулятора для инкубатора:
Данная схема была очень популярна для повторения в 2000 годах, но и сейчас она не потеряла актуальность и с возложенной на нее функцией справляется. При наличии доступа к старым деталям, можно собрать терморегулятор своими руками практически бесплатно.
Сердцем самоделки является интегральный усилитель К140УД7 или К140УД8. В данном случае он подключен с положительной обратной связью и является компаратором. Термочувствительным элементом R5 служит резистор типа ММТ-4 с отрицательным ТКЕ, это значит, что при нагревании его сопротивление уменьшается.
Выносной датчик подключается через экранированный провод. Для уменьшения наводок и ложного срабатывания устройства, длина провода не должна превышать 1 метр. Нагрузка управляется через тиристор VS1 и максимально допустимая мощность подключаемого нагревателя зависит от его номинала. В данном случае 150 Ватт, электронный ключ — тиристор необходимо установить на небольшой радиатор, для отвода тепла. В таблице ниже представлены номиналы радиоэлементов, для сборки терморегулятора в домашних условиях.
Устройство не имеет гальванической развязки от сети 220 Вольт, при настройке будьте внимательны, на элементах регулятора присутствует сетевое напряжение, которое опасно для жизни. После сборки обязательно изолируйте все контакты и поместите устройство в токонепроводящий корпус. На видео ниже рассматривается, как собрать терморегулятор на транзисторах:
Теперь расскажем как сделать регулятор температуры для теплого пола. Рабочая схема срисована с серийного образца. Пригодится тем, кто хочет ознакомиться и повторить, или как образец для поиска неисправности прибора.
Центром схемы является микросхема стабилизатора, подключенная необычным способом, LM431 начинает пропускать ток при напряжении выше 2,5 Вольт. Именно такой величины у данной микросхемы внутренний источник опорного напряжения. При меньшем значении тока она ни чего не пропускает. Эту ее особенность стали использовать во всевозможных схемах терморегуляторов.
Как видим, классическая схема с измерительным плечом осталась: R5, R4 – дополнительные резисторы делителя напряжения, а R9 — терморезистор. При изменении температуры происходит сдвиг напряжения на входе 1 микросхемы, и в случае, если оно достигло порога срабатывания, то напряжение идет дальше по схеме. В данной конструкции нагрузкой для микросхемы TL431 являются светодиод индикации работы HL2 и оптрон U1, для оптической развязки силовой схемы от управляющих цепей.
Как и в предыдущем варианте, устройство не имеет трансформатора, а получает питание на гасящей конденсаторной схеме C1, R1 и R2, поэтому оно так же находится под опасным для жизни напряжением, и при работе со схемой нужно быть предельно осторожным. Для стабилизации напряжения и сглаживания пульсаций сетевых всплесков, в схему установлен стабилитрон VD2 и конденсатор C3. Для визуальной индикации наличия напряжения на устройстве установлен светодиод HL1. Силовым управляющим элементом является симистор ВТ136 с небольшой обвязкой для управления через оптрон U1.
При данных номиналах диапазон регулирования находится в пределах 30-50°С. При кажущейся на первый взгляд сложности конструкция проста в настройке и легка в повторении. Наглядная схема терморегулятора на микросхеме TL431, с внешним питанием 12 вольт для использования в системах домашней автоматики представлена ниже:
Данный терморегулятор способен управлять компьютерным вентилятором, силовым реле, световыми индикаторами, звуковыми сигнализаторами. Для управления температурой паяльника существует интересная схема с использованием все той же интегральной микросхемы TL431.
Для измерения температуры нагревательного элемента используют биметаллическую термопару, которую можно позаимствовать с выносного измерителя в мультиметре или купить в специализированном магазине радиодеталей. Для увеличения напряжения с термопары до уровня срабатывания TL431, установлен дополнительный усилитель на LM351. Управление осуществляется через оптрон MOC3021 и симистор T1.
При включении терморегулятора в сеть необходимо соблюдать полярность, минус регулятора должен быть на нулевом проводе, иначе фазное напряжение появится на корпусе паяльника, через провода термопары. В этом и является главный недостаток этой схемы, ведь не каждому хочется постоянно проверять правильность подключения вилки в розетку, а если пренебречь этим, то можно получить удар током или повредить электронные компоненты во время пайки. Регулировка диапазона производится резистором R3. Данная схема обеспечит долгую работу паяльника, исключит его перегрев и увеличит качество пайки за счет стабильности температурного режима.
Еще одна идея сборки простого терморегулятора рассмотрена на видео:
Также дополнительно рекомендуем просмотреть еще одну идею сборки термостата для паяльника:
Разобранных примеров регуляторов температуры вполне достаточно для удовлетворения нужд домашнего мастера. Схемы не содержат дефицитных и дорогих запчастей, легко повторяются и практически не нуждаются в настройке. Данные самоделки запросто можно приспособить для регулирования температуры воды в баке водонагревателя, следить за теплом в инкубаторе или теплице, модернизировать утюг или паяльник. Помимо этого можно восстановить старенький холодильник, переделав регулятор для работы с отрицательными значениями температуры, путем замены местами сопротивлений в измерительном плече. Надеемся наша статья была интересна, вы нашли ее для себя полезной и поняли, как сделать терморегулятор своими руками в домашних условиях! Если же у вас все еще остались вопросы, смело задавайте их в комментариях.
Будет интересно прочитать:
Соблюдение температурного режима является очень важным технологическим условием не только на производстве, но и в повседневной жизни. Имея столь большое значение, этот параметр должен чем-то регулироваться и контролироваться. Производят огромное количество таких приборов, имеющих множество особенностей и параметров. Но сделать терморегулятор своими руками порой куда выгоднее, нежели покупать готовый заводской аналог.
Общее понятие о температурных регуляторах
Приборы, фиксирующие и одновременно регулирующие заданное температурное значение, в большей степени встречаются на производстве. Но и в быту они также нашли своё место. Для поддержания необходимого микроклимата в доме часто используются терморегуляторы для воды. Своими руками делают такие аппараты для сушки овощей или отопления инкубатора. Где угодно может найти своё место подобная система.
В данном видео узнаем что из себя представляет регулятор температуры:
В действительности большинство терморегуляторов являются лишь частью общей схемы, которая состоит из таких составляющих:
Датчик температуры, выполняющий замер и фиксацию, а также передачу к регулятору полученной информации. Происходит это за счёт преобразования тепловой энергии в электрические сигналы, распознаваемые прибором. В роли датчика может выступать термометр сопротивления или термопара, которые в своей конструкции имеют металл, реагирующий на изменение температуры и под её воздействием меняющий своё сопротивление.
Аналитический блок – это и есть сам регулятор. Он принимает электронные сигналы и реагирует в зависимости от своих функций, после чего передаёт сигнал на исполнительное устройство.
Исполнительный механизм – некое механическое или электронное устройство, которое при получении сигнала с блока ведёт себя определённым образом. К примеру, при достижении заданной температуры клапан перекроет подачу теплоносителя. И напротив, как только показания станут ниже заданных, аналитический блок даст команду на открытие клапана.
Это три основные части системы поддержания заданных температурных параметров. Хотя, помимо них, в схеме могут участвовать и другие части наподобие промежуточного реле. Но они исполняют лишь дополнительную функцию.
Принцип работы
Принцип, по которому работают все регуляторы, – это снятие физической величины (температуры), передача данных на схему блока управления, решающего, что нужно сделать в конкретном случае.
Если делать термореле, то наиболее простой вариант будет иметь механическую схему управления. Здесь с помощью резистора устанавливается определённый порог, при достижении которого будет дан сигнал на исполнительный механизм.
Чтобы получить дополнительную функциональность и возможность работы с более широким диапазоном температур, придётся встраивать контроллер. Это же поможет увеличить срок эксплуатации прибора.
На данном видео вы можете посмотреть как самостоятельно изготовить терморегулятор для электрического отопления:
Самодельный регулятор температуры
Схем для того, чтобы сделать терморегулятор самому, в действительности очень много. Всё зависит от сферы, в которой будет применяться такое изделие. Конечно, создать нечто слишком сложное и многофункциональное крайне трудно. А вот термостат, который сможет использоваться для обогревания аквариума или сушки овощей на зиму, вполне можно создать, имея минимум знаний.
Простейшая схема
Самая простая схема термореле своими руками имеет безтрансформаторный блок питания, который состоит из диодного моста с параллельно подключённым стабилитроном, стабилизирующим напряжение в пределах 14 вольт, и гасящего конденсатора. Сюда же можно при желании добавить и стабилизатор на 12 вольт.
В основе всей схемы будет использован стабилитрон TL431, который управляется делителем, состоящим из резистора на 47 кОм, сопротивления на 10 кОм и терморезистора, выполняющего роль датчика температуры, на 10 кОм. Его сопротивление понижается с повышением температуры. Резистор и сопротивление лучше подбирать, чтобы добиться наилучшей точности срабатывания.
Сам же процесс выглядит следующим образом: когда на контакте управления микросхемой образуется напряжение больше 2,5 вольт, то она произведёт открытие, что включит реле, подавая нагрузку на исполнительный механизм.
Как изготовить терморегулятор для инкубатора своими руками, вы можете увидеть на представленном видео:
И напротив, когда напряжение станет ниже, то микросхема закроется и реле отключится.
Чтобы избежать дребезжания контактов реле, необходимо его выбирать с минимальным током удержания. И параллельно вводам нужно припаять конденсатор 470×25 В.
При использовании терморезистора NTC и микросхемы, уже бывавших в деле, предварительно стоит проверить их работоспособность и точность.
Таким образом, получается простейший прибор, регулирующий температуру. Но при правильно подобранных составляющих он превосходно работает в широком спектре применения.
Прибор для помещения
Такие терморегуляторы с датчиком температуры воздуха своими руками оптимально подходят для поддержания заданных параметров микроклимата в помещениях и ёмкостях. Он полностью способен автоматизировать процесс и управлять любым излучателем тепла начиная с горячей воды и заканчивая тэнами. При этом термовыключатель имеет отличные эксплуатационные данные. А датчик может быть как встроенным, так и выносным.
Здесь в качестве термодатчика выступает терморезистор, обозначенный на схеме R1. В делитель напряжения входят R1, R2, R3 и R6, сигнал с которого поступает на четвёртый контакт микросхемы операционного усилителя. На пятый контакт DA1 подаётся сигнал с делителя R3, R4, R7 и R8.
Сопротивления резисторов необходимо подбирать таким образом, чтобы при минимально низкой температуре замеряемой среды, когда сопротивление терморезистора максимальное, компаратор положительно насыщался.
Напряжение на выходе компаратора составляет 11,5 вольт. В это время транзистор VT1 находится в открытом положении, а реле K1 включает исполнительный или промежуточный механизм, в результате чего начинается нагрев. Температура окружающей среды в результате этого повышается, что понижает сопротивление датчика. На входе 4 микросхемы начинает повышаться напряжение и в результате превосходит напряжение на контакте 5. Вследствие этого компаратор входит в фазу отрицательного насыщения. На десятом выходе микросхемы напряжение становится приблизительно 0,7 Вольт, что является логическим нулём. В результате транзистор VT1 закрывается, а реле отключается и выключает исполнительный механизм.
На микросхеме LM 311
Такой термоконтроллер своими руками предназначен для работы с тэнами и способен поддерживать заданные параметры температуры в пределах 20-100 градусов. Это наиболее безопасный и надёжный вариант, так как в его работе применяется гальваническая развязка термодатчика и регулирующих цепей, а это полностью исключает возможность поражения электротоком.
Как и большинство подобных схем, в её основу берется мост постоянного тока, в одно плечо которого подключают компаратор, а в другое – термодатчик. Компаратор следит за рассогласованием цепи и реагирует на состояние моста, когда тот переходит точку баланса. Одновременно он же старается уравновесить мост с помощью терморезистора, изменяя его температуру. А термостабилизация может возникнуть лишь при определённом значении.
Резистором R6 задают точку, при которой должен образоваться баланс. И в зависимости от температуры среды терморезистор R8 может в этот баланс входить, что и позволяет регулировать температуру.
На видео вы можете увидеть разбор простой схемы терморегулятора:
Если заданная R6 температура ниже необходимой, то на R8 сопротивление слишком большое, что понижает ток на компараторе. Это вызовет протекание тока и открывание семистора VS1, который включит нагревательный элемент. Об этом будет сигнализировать светодиод.
По мере того как температура будет повышаться, сопротивление R8 станет снижаться. Мост будет стремиться к точке баланса. На компараторе потенциал инверсного входа плавно снижается, а на прямом – повышается. В какой-то момент ситуация меняется, и процесс происходит в обратную сторону. Таким образом, термоконтроллер своими руками будет включать или выключать исполнительный механизм в зависимости от сопротивления R8.
Если в наличии нет LM311, то её можно заменить отечественной микросхемой КР554СА301. Получается простой терморегулятор своими руками с минимальными затратами, высокой точностью и надёжностью работы.
Необходимые материалы и инструменты
Сама по себе сборка любой схемы электрорегулятора температуры не занимает много времени и сил. Но чтобы сделать термостат, необходимы минимальные знания в электронике, набор деталей согласно схеме и инструмент:
Импульсный паяльник. Можно использовать и обычный, но с тонким жалом.
Припой и флюс.
Печатная плата.
Кислота, чтобы вытравить дорожки.
Достоинства и недостатки
Даже простой терморегулятор своими руками имеет массу достоинств и положительных моментов. Говорить же о заводских многофункциональных устройствах и вовсе не приходится.
Из недостатков можно назвать высокую стоимость заводских моделей. Конечно, самодельных приборов это не касается. А вот производственные, которые требуются при работе с жидкими, газообразными, щелочными и другими подобными средами, имеют высокую стоимость. Особенно если прибор должен иметь множество функций и возможностей.