Полимерные материалы состав строение свойства связующие вещества

ОБЩИЕ СВЕДЕНИЯ О ПОЛИМЕРНЫХ СВЯЗУЮЩИХ

Полимерные связующие — это синтетические или природные органические вещества, способные самопроизвольно или под действием различных факторов (веществ-отвердителей, температуры и др.) переходить из жидкого состояния в твердое, и как в жидком состоянии, так и после отвердевания имеющих хорошую адгезию к другим материалам. Полимерные связующие в исходном состоянии могут быть высокомолекулярными веществами, веществами со средней молекулярной массой (в пределах 100. 1000) — так называемыми олигомерами или низкомолекулярными мономерными веществами. Однако все они в процессе отвердевания переходят в высокомолекулярные полимерные вещества.

Основной вид полимерных связующих — синтетические полимеры, получаемые из низкомолекулярных продуктов (мономеров) полимеризацией или поликонденсацией. Среди синтетических полимеров отдельную группу составляют каучуки и каучукоподобные полимеры, характеризующиеся очень большой деформативностью и высокозластичными свойствами, из-за чего их называют эластомерами.

Природные смолы и высокомолекулярные вещества применяют как в естественном состоянии, так и после химической модификации, придающей им необходимые свойства — модифицированные природные полимеры.

В зависимости от отношения к нагреванию и потенциальной способности к укрупнению (сшивке) молекул различают термопластичные и термореактивные полимерные вещества.

Термопластичные вещества при нагревании переходят из твердого состояния в жидкое (плавятся), а при охлаждении вновь затвердевают, причем такие переходы могут повторяться много раз. Термопластичность объясняется линейным строением молекул, их химической инертностью и довольно слабым межмолекулярным взаимодействием.

По зтой же причине большинство термопластов способно растворяться в соответствующих растворителях. К термопластам относятся многие широко распространенные полимеры: полиэтилен, поливинилхлорид, полистирол, модифицированная целлюлоза (метилцеллюлоза, нитроцеллюлоза) и природные смолы: канифоль, копал, битумы, дегти.

Термореактивными называют вещества, у которых переход из жидкого состояния в твердое происходит необратимо; при этом у них меняется молекулярная структура: линейные молекулы соединяются в пространственные сетки — гигантские макромолекулы. Такое

необратимое твердение происходит не только под действием нагревания

(именно отсюда пошел термин „термореактивность"), но и под дейст

вием отвердителей, ионизирующего излучения и других факторов.

Отвержденные термореактивные полимеры, как правило, более термо

стойки, чем термопластичные, и практически не растворяются, а только

набухают в растворителях

Термореактивные полимерные вещества, используемые в строительстве в качестве связующих, обычно представляют собой вязкие жидкости, называемые не совсем правильно „смолами". В химической технологии зги продукты частичной полимеризации (с молекулярной массой в пределах 100. 1000), имеющие линейное строение молекул и способные к дальнейшему укрупнению, получили название олигоме-ров. К термореактивным олигомерным связующим относятся, например, эпоксидные и полиэфирные смолы, олифы, каучуки в смеси с вулканизаторами и т. п.

В зависимости от агрегатного (физического) состояния полимерные связующие могут быть:

вязкими жидкостями: олигомерные (эпоксидные, полиэфирные и др.) и мономерные (фурфурольные, фурфуролацетоновые и др.)

водными дисперсиями полимеров (латексы синтетических каучу-ков, поливинилацетатная и полиакрилатная дисперсии и др.);

порошками и блочными продуктами (гранулы, листы, пленки): полиэтилен, полистирол, поливинилхлорид, полиметилметакрилат.

Один и тот же полимер в зависимости от метода синтеза может иметь различное физическое состояние. Так, полистирол может быть в виде гранул, тонкозернистого порошка, раствора в органических растворителях и водной дисперсии.

Для получения полимерцементных материалов наиболее удобны водные дисперсии полимеров и водорастворимые порошкообразные полимерные продукты; для полимербетонов и полимеррастворов — жид-ковязкие олигомеры и мономеры, реже для этой цели применяют водные дисперсии полимеров.

Полимерные связующие существенно отличаются от минеральных вяжущих. Адгезия полимерных связующих к другим материалам (в частности, к заполнителям) значительно выше, чем минеральных вяжущих. Скорость и условия твердения полимерных связующих можно варьировать в широких пределах; в целом они твердеют значительно быстрее цементов. Прочность при сжатии, а особенно при растяжении и изгибе у полимерных связующих выше, чем у минеральных вяжущих. Но при использовании термопластичных полимеров необходимо помнить, что прочность их быстро снижается при повышении температуры. В целом у отвержденных полимерных связующих довольно низкая термостойкость, зависящая от состава и строения полимера и находящаяся в пределах 60. 250°С. Полимерные связующие в подавляющем большинстве водостойки и химически стойки: они хорошо противостоят действию кислот, щелочей, солевых растворов, растворителей.

Читать также:  Сверление отверстий в искусственном камне

Для каждого вида полимерных связующих существуют свои рациональные области применения, выбираемые с учетом всех его свойств.

Большая часть синтезируемых полимеров используется в производстве пластмасс, которые применяются в самых различных областях современной жизни. Для получения полимерных и полимерцементных бетонов, растворов и мастик используется пока небольшой объем полимерных продуктов, но промышленность уже выпускает для этих целей специальные марки полимеров и олигомерных продуктов.

Высокая стоимость полимерных связующих требует снижения полимероемкости, т. е. достижения требуемого результата при минимальном расходе полимера. Поэтому полимерные связующие применяют для получения тонких облицовочных изделий (плиток, пленок), защитных химически стойких’ покрытий, лицевых покрытий полов, отделочных слоев, приклеивающих материалов, гидроизоляционных покрытий.

Полимерные материалы (пластмассы, композиты, пластики) – это композиции определённого состава, получаемые из мономеров, олигомеров, полимеров с введением при их изготовлении либо в процессе формирования изделия различных компонентов (ингредиентов) для целенаправленного придания свойств как материалу, так и изделию из него.

В полимерный материал могут входить одновременно или в различном состоянии: связующее (полимерная матрица), наполнители, пластификаторы, стабилизаторы, красители, сшивающие агенты (отвердители), структурообразователи, порообразователи, смазки, антипирены, антистатики, антимикробные агенты и другие компоненты, придающие специфические свойства композиции в целом.

Связующее в пластической массе или полимерная матрица в полимерном материале (изделия) удерживает все ингредиенты композиции в форме и размерах, полученных после её переработки. Связующим (полимерной матрицей) могут быть индивидуальные полимеры. Помимо основного компонента связующего – мономера, чаще олигомера, полимера или их сочетания – в него вводят различные органические соединения, изменяющие (модифицирующие) свойства компонентов связующего на стадии изготовления полимерного материала или при его переработке в изделия.

Модифицирование проводят либо без химических превращений основного полимера путём изменения условий производства полимерного материала или введением малых количеств неполимерных веществ (структурная модификация), либо в результате химических реакций, как на стадии синтеза (сополимеризация, полимеризационное наполнение и др.), так и путём химических превращений уже синтезированных олигомеров и полимеров (химическая модификация).

Наполнители – это твёрдые, жидкие, газообразные органические и неорганические вещества, вводимые в мономер, олигомер или полимер с целью снижения стоимости изделия с одновременным улучшением эксплуатационных параметров пластических масс, ведущих к расширению областей их применения. Химическая природа, физическое строение и форма наполнителя определяют механические, электрические и химические свойства полимеров, а также их водо-, термо- и теплостойкость. Наполнители в значительной степени влияют и на технологический процесс производства пластической массы, и на способы её переработки в изделия.

Наполнители в зависимости от химической природы и активности поверхности разделяют на органические и неорганические, природные и синтетические, активные м неактивные, а в зависимости от формы и структуры – на порошкообразные (дисперсные), волокнистые и листовые.

В производстве полимерных композиционных материалов наибольшее применение находят порошкообразные наполнители различных форм: кубической – полевой шпат, кальциты; сферической – искусственные микросферы, стеклосферы; игольчатой – древесная мука, силикат кальция; чешуйчатой – тальк, графит, каолин, гидроокись алюминия; в виде параллелепипеда – полевой шпат, оксиды кремния, бария, сочетание которых между собой может быть самым разнообразным.

Из волокнистых наполнителей широкое распространение получили хлопковые очёсы, короткие целлюлозные, асбестовые, стеклянные, а также углеродные, борные, металлические волокна.

Читать также:  Направленная антенна своими руками

Из листовых наполнителей применяют бумагу, различные ткани (стеклохлопчатобумажные, боро-, органоткани и др.), ленты, например из металлической фольги.

Пластификаторы – это продукт (вещества), вводимые в мономер, олигомер с целью повышения эластичности и пластичности, а также облегчения диспергирования в композиции сыпучих компонентов, например, порошкообразных наполнителей. Пластификаторы понижают температуру переработки и могут придавать материалу такие свойства, как свето-, термо- и морозостойкость, негорючесть.

Известно свыше 500 наименований пластификаторов, применяется около 100. Важнейшими из них являются эфиры алифатических или ароматических кислот и алифатических спиртов, эфиры гликолей и эфиры фосфорной кислоты, эпоксидированные соединения, полиэфиры, хлорированные соединения и др.

Стабилизаторы (антиоксиданты, термо-, светостабилизаторы, противоутомители) – вещества, повышающие устойчивость мономеров, олигомеров или полимеров к действию кислорода, особенно при повышенных температурах в условиях производства, переработки и хранения – эксплуатации полимерных материалов. Различают окрашивающие и неокрашивающие антиоксиданты, среди которых наибольшее применение находят неозон, нонокс, диафен, алкофены и др.

Сшивающие агенты (отвердители, вулканизирующие агенты) – вещества, создающие в полимерной матрице композиционного материала на определённой стадии его производства, чаще всего при изготовлении изделия, химические связи между макромолекулами с целью повышения прочности, тепло- и химстойкости и других свойств. Условно сшивающие агенты разделяют на отвердители для пластических масс и вулканизирующие агенты для каучуков. К отвердителям относят алифатические и ароматические амины, низкомолекулярные полиамиды, ангидриды кислот, полиизоцианаты, гексаметилентетраамин, алкоксисиланы, активные растворители – фурфурол и фуриловый спирт, стирол и др.; к вулканизирующим агентам – серу, органические ди- и полисульфиды, органические перекиси, диамины, производные хинона, алкилфенолоформальдегидные смолы, диизоцианаты, окислы металлов и др.

Структурообразователями называют вещества, вводимые в полимерные материалы для получения полимерной матрицы с определённой структурой. К таким веществам относятся тонкодисперсные порошки окислов, нитридов металлов, карбиды, соли органических кислот, поверхностно-активные вещества (ПАВ), вводимые в количестве 0,1. 1,0% от массы полимера. Выполняя роль центров кристаллизации и (или) понижая поверхностное натяжение на границе фаз, эти добавки способствуют улучшению прочностных, химических и других свойств полимерных материалов.

Смазки (парафины, воска, стеараты) предохраняют от прилипания полимера к поверхностям формирующего оборудования, способствуя диспергированию ингредиентов в материале.

Антистатики (различные группы ПАВ, добавляемые в количестве до 1% от массы полимера) предотвращают возникновение и накопление статического электричества на изделиях из полимерных материалов.

Антипирены (галогеносодержащие соединения, производные фосфора, соединения сурьмы, изоцианаты) снижают горючесть материала, затрудняя воспламенение и распространение пламени.

Порообразователи – вспенивающие вещества, используемые для образования в полимере или полимерном материале замкнутых, не сообщающихся (пенопласт) или сообщающихся (поропласт) между собой пор, что ведёт к существенному снижению плотности материала.

Порообразователями могут быть органические и неорганические жидкие и твёрдые вещества, разлагающиеся при нагревании с выделением CO2, NH2, N2 (химические), либо воздух, N2, CO2, NH2, H2 в виде газов, вводимых в композицию под давлением; легкокипящие, но не разлагающиеся при нагревании жидкости (метиленхлорид, пектан, гектан и др.) и водо-растворимые соли (KCl, NaCl и др.), вымываемые из изделия (физические порообразователи).

Антисептики (доли процента органических соединений Sn, As, Hg, бромированных салициламидов, меркаптанов) в полимерном материалу затрудняют появление и распространение микроорганизмов.

Красители (органические и неорганические пигменты) вводятся в полимерные матариалы для придания им цвета и товарного вида и должны обладать высокой степенью дисперсности, свето-, термо- и атмосферостойкостью, стойкостью к воздействию агрессивных сред (кислот, щелочей и др.) и отсутствием склонности к миграции на поверхность изделия.

Полимерные строительные материалы – это чаще всего многокомпонентные системы, основным отличительным признаком которых является вид связующего – полимера. Однако в определённых условиях используются так называемые комополимерные материалы – полимеры, не содержащие каких-либо модифицирующих добавок. Перечень этих материалов и области их использования довольно значительны.

Читать также:  Температура плавления стекла в градусах цельсия

При попытках классифицировать существующий массив полимерных материалов, всегда возникают трудности, связанные с поливариантностью их состава и структуры и отсюда практически неограниченным набором – сочетанием свойств конечных продуктов и изделий из них.

На практике и в литературе используют несколько способов разделения полимерных материалов, основу которых составляют:

· происхождение – природные, искусственные, синтетические;

· механизм синтеза – полимеризационные, поликонденсационные;

· способ синтеза – суспензионные, эмульсионные, блочные или массовые;

· поведение при воздействии высоких температур – термопласты, реактопласты;

· химическое строение – органические и неорганические или карбоцепные, гетероцепные, элементоорганические и неорганические;

· конечный продукт – олигомеры, полимеры, пластические массы или полимерные материалы;

· величина деформационных характеристик – жёсткие, полужёсткие, мягкие и эластичные;

· область применения – так называемые потребительские ряды – самый широкий спектр для классификации.

Дата добавления: 2017-01-29 ; просмотров: 761 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Полимерами называют высокомолекулярные вещества, молекулы которых состоят из огромного количества структурных звеньев, взаимодействующих друг с другом посредством ковалентных связей с образованием макромолекул.

По составу основной цепи макромолекул полимеры разделяют на три группы:

Макромолекулы могут иметь линейное, разветвленное или сетчатое (трехмерное) строение, что определяет физико-механические и химические свойства полимеров.

Макромолекулы линейного строения вытянуты в виде цепей, в которых атомы мономера (низкомолекулярного соединения) связаны химическими связями, разветвленные макромолекулы характерны наличием мономерных звеньев, ответвленных от основной цепи полимера. Сетчатые (трехмерные) структуры макромолекул характеризуются тем, что образуются обычно «сшивкой» отдельных линейных или разветвленных Цепей полимера.

Полимерные материалы состав строение свойства связующие вещества

Полимеры с макромолекулами линейного или разветвленного строения плавятся при нагренании с изменением свойств и растворяются в соответствующем органическом растворителе, а при охлаждении они вновь затвердевают. Такие полимеры, способные многократно размягчаться при нагревании и затвердевать при охлаждении, называют термопластичными (термопласты). Напротив, полимеры с макромолекулами трехмерного строения имеют повышенную устойчивость к термическим и механическим воздействиям, не растворяются в растворителях, а лишь набухают. Такие полимеры не могут обратимо размягчаться при повторном нагревании и носят название термореактивные полимеры (реактопласты).

Полимеры в твердом состоянии имеют обычно аморфную структуру. Однако существуют полимеры с кристаллической или аморфно-кристаллической структурой. Аморфные термопластичные полимеры в зависимости от соотношений сил межмолекулярного взаимодействия и теплового движения макромолекул могут быть в стеклообразном, высокоэластичном и вязкотекучем пластичном состояниях.

В зависимости от метода получения полимеров их можно разделить на полимеризационные, поликонденсационные и модифицированные природные полимеры. Полимеризационные полимеры получают в процессе полимеризации мономеров вследствие раскрытия кратных связей ненасыщенных углеводородов и соединения элементарных звеньев мономера в длинные цепи. Поскольку при реакции полимеризации атомы и их группировки не отщепляются, побочные продукты не образуются, а химический состав мономера и полимера одинаков.

Поликонденсационные полимеры получают в процессе реакции поликонденсации двух или нескольких низкомолекулярных веществ. При этой реакции наряду с основным продуктом поликонденсации образуются побочные соединения (вода, спирты и др.), а химический состав полимера отличается от химического состава исходных продуктов поликонденсации. Модифицированные полимеры получают из природных высокомолекулярных веществ (целлюлоза, казеин, каучуки) путем их химической модификации, для изменения их первоначальных свойств а заданном направлении. Эти полимеры не находят широкого применения в строительстве вследствие их недостаточной водо- и атмосферостойкости.

Две первые группы полимеров вследствие практически неограниченной сырьевой базы для их производства являются основным связующим для большинства полимерных материалов.

Оцените статью
Добавить комментарий

Adblock
detector