Нет ничего проще для электрика, чем подключить светильник. Но если приходится собирать люстру или бра с несколькими плафонами, часто возникает вопрос: «Как лучше соединить?» Чтобы понять, чем отличается последовательное и параллельное соединение лампочек – вспомним курс физики за 8 класс. Давайте заранее договоримся, что будем рассматривать как пример освещение в сетях 220 V AC, эта информация справедлива и для других напряжений и токов.
Последовательное соединение
Через цепь из последовательно соединенных элементов протекает один и тот же ток. Напряжение на элементах, как и выделяемая мощность, – распределяется согласно собственным сопротивлениям. При этом ток равняется частному напряжения и сопротивления, т.е.:
Где Rобщ – сумма сопротивлений всех элементов последовательно соединенной цепи.
Чем больше сопротивление – тем меньше ток.
Подсоединение потребителей последовательно
Чтобы соединить два и больше источника света последовательно, нужно концы от патронов соединить между собой так, как изображено на картинке, т.е. у крайних патронов останется по одному свободному проводу, на которые мы и подаем фазу (P или L) с нулем (N), а средние патроны соединяются друг с другом одним проводом.
Через лампу 100 Вт, при напряжении 220 В, течет ток чуть меньше чем 0,5 А. Если соединить две по этой схеме, ток упадет в два раза. Лампы будут светить в половину накала. Потребляемая мощность не сложится, а уменьшиться до 55 (примерно) с обеих. И так далее: чем больше ламп, тем меньше ток и яркость каждой отдельной.
- ресурс ламп накаливания возрастает;
- если перегорает одна – не горят и остальные;
- если использовать приборы разной мощности, те, что больше, – практически не будут светиться, те, что меньше, – будут светиться нормально;
- все элементы должны быть одинаковой мощности;
- нельзя в светильник с таким соединением включать энергосберегающие лампы (светодиодные и компактные люминесцентные лампы).
Такое соединение отлично подходит в ситуациях, когда нужно создать мягкий свет, например, для бра. Так соединяются светодиоды в гирляндах. Огромный минус – это то, что при сгорании одного звена не светят и другие.
Параллельное соединение
В цепях, соединенных параллельно, к каждому из элементов прикладывается полное напряжение источника питания. При этом ток, протекающий через каждую из ветвей, зависит только от ее сопротивления. Провода от каждого патрона соединены между собой обоими концами.
- если одна лампа перегорит – остальные продолжат выполнять свои функции;
- каждая из цепей светит в полный накал независимо от своей мощности, потому что к каждой приложено полное напряжение;
- можно вывести из светильника три, четыре и больше проводов (ноль и нужное количество фаз к выключателю) и включать нужное количество ламп или группу;
- работают энергосберегающие лампочки.
Чтобы включать свет по группам, соберите такую схему либо в корпусе светильника, либо в распределительной коробке.
Каждая из ламп включается своим выключателем, их в этом случае три, а включены две.
Законы последовательного и параллельного соединения проводников
Для последовательного соединения важно учитывать, что ток через все лампы протекает один и тот же. Это значит, что чем больше элементов в цепи, тем меньше через нее протекает ампер. Напряжение на каждой лампе равняется произведению тока на ее сопротивление (закон Ома). Увеличивая количество элементов, вы будете понижать напряжение на каждом из них.
В параллельной цепи каждая ветвь берет на себя необходимое ей количество тока, а напряжение прикладывается то, которое выдает источник питания (напр. Бытовая электросеть)
Смешанное соединение
Другое название этой схемы последовательно-параллельная цепь. В ветвях параллельной цепи включено последовательно несколько потребителей, например, накаливания, галогенных или светодиодных. На LED-матрицах часто применяется такая схема. Этот способ дает некоторые преимущества:
- подключение отдельных групп лампочек на люстре (например, 6-рожковой);
- если сгорит лампа – не будет гореть только одна группа, из строя выйдет только одна последовательная цепь, остальные, параллельно стоящие, будут светить;
- группируйте лампы последовательно одной мощности, а параллельные цепи – разной, если это нужно.
Недостатки те же, что присущи последовательным цепям.
Схемы подключения других типов ламп
Чтобы правильно подключить другие виды осветительных приборов, нужно сначала узнать их принцип работы и ознакомиться со схемой подключения. Каждый из типов ламп требует определенных условий для работы. Процесс накаливания спирали совсем не предназначен для излучения света. В области больших мощностей и площади их заметно потеснили газоразрядные приборы.
Люминесцентные лампы
Кроме ламп накаливания, часто применяются и галогенные, и люминесцентные трубчатые лампы (ЛЛ). Последние распространены в административных зданиях, боксах для покраски автомобилей, гаражах, производственных и торговых помещениях. Немного реже их применяют дома, например, на кухне для подсветки рабочей зоны.
ЛЛ нельзя подключить напрямую к сети 220 В, для розжига нужно высокое напряжение, поэтому используется специальная схема:
- дроссель, стартер, конденсатор (не обязательно);
- электронный балласт.
Первая схема применяется все реже, отличается меньшим КПД, гудением дросселя и мерцанием светового потока, который часто не заметен глазу. Подключение электронного балласта часто изображено на корпусе.
Подключается либо одна лампу, либо две последовательно, в зависимости от ситуации и того, что есть в наличии, также и с электронным балластом.
Конденсатор между фазой и нулем нужен для компенсации реактивной мощности дросселя и снижения сдвига фазы, цепь запустится и без него.
Обратите внимание на то, как подсоединяются лампы, в освещении люминесцентным светом нельзя пользоваться теми же правилами, что и при работе с лампами накаливания. Похожим образом обстоит дело и с ДРЛ и ДНАТ-лампами, но они редко встречаются в быту, чаще в промышленных цехах и уличных фонарях.
Галогенные источники света
Этот тип часто применяется в точечных светильниках на подвесных и натяжных потолках. Подходят для освещения мест с повышенной влажностью, поскольку выпускаются для работы в цепях с пониженным напряжением, например, 12 вольт.
Для питания используют сетевой трансформатор 50 Гц, но габариты велики и со временем он начинает гудеть. Лучше для этого подойдет электронный трансформатор, на него приходит 220 В с частотой 50 Гц, а уходит 12 В переменного тока с частотой в несколько десятков кГц. В остальном подключение аналогичное с лампами накаливания.
Заключение
Правильно собирайте схемы в светильниках. Не подключайте энергосберегающие лампы последовательно и придерживайтесь схемы включения люминесцентных и галогенных светильников. Энергосберегающие лампы «не любят» пониженное напряжение и быстро сгорят, а люминесцентный светильник может и вовсе не зажечься.
Для подключения освещения подойдут клеммные колодки или зажимы Wago, тем более, если проводка алюминиевая, а провода у светильника медные. Главное – соблюдайте правила безопасности при работе с электрическими приборами.
Хорошо, если у установщика есть возможность применить схему поканального усиления. Однако в большинстве случаев это считается непозволительной роскошью, и в процессе инсталляции аудиосистемы в девяти случаях из десяти возникает потребность нагрузить, к примеру, двухканальный аппарат четырьмя динамиками или четырехканальный — восемью. Собственно, страшного в этом ничего нет. Важно только держать в памяти несколько основных способов соединения громкоговорителей. Даже не несколько, а всего-то два: последовательный и параллельный. Третий — последовательно-параллельный — производная из двух перечисленных. Другими словами, если у вас имеется больше одного динамика на канал усиления и вы знаете с какими нагрузками может справиться аппарат, то выбрать одну, наиболее приемлемую схему из трех возможных не так уж и сложно.
Последовательное соединение динамиков
Понятно, что когда драйверы соединены в последовательную цепочку, возрастает сопротивление нагрузки. Также понятно, что с увеличением количества звеньев оно растет. Обычно потребность увеличения сопротивления возникает для снижения выходных показателей акустики. В частности, при установке тыловой подзвучки или динамика центрального канала, которые в основном выполняют вспомогательную роль, и значительных мощностей от усилителя им не требуется. В принципе последовательно можно соединить сколько угодно динамиков, однако их общее сопротивление не должно превышать 16 Ом: усилителей, работающих с более высокими нагрузками, немного.
На рисунке 1 показано, каким образом две динамические головки включаются в последовательную цепочку. Положительный выходной разъем канала усилителя соединяется с плюсовой клеммой динамика А, а «минус» того же драйвера — с «плюсом» динамика В. После чего минусовая клемма динамика В подключается к отрицательному выходу того же канала усиления. По той же схеме строится и второй канал.
Это два динамика. Если требуется последовательно соединить, скажем, четыре громкоговорителя, то метод аналогичный. «Минус» динамика В вместо того, чтобы подключаться к выходу усилителя, соединяется с «плюсом» С. Дальше от минусовой клеммы C бросается провод на «плюс» D, а уже от «минуса» D происходит соединение с отрицательным выходным разъемом усилителя.
Вычисление эквивалентного сопротивления нагрузке канала усиления, на который нагружена цепочка последовательно соединенных динамиков, производится простым сложением по следующей формуле: Zt = Za + Zb, где Zt — эквивалентное сопротивление нагрузке, а Za и Zb соответственно сопротивление динамиков А и В. К примеру, имеется у вас четыре 12-дюймовых сабвуферных головки сопротивлением в 4 ома и один-единственный стереоусилитель 2 х 100 Вт, не терпящий низкоомных (2 Ом и меньше) нагрузок. В этом случае последовательное соединение НЧ-динамиков — единственно возможный вариант. Каждый канал усиления при этом обслуживает пару головок с общим сопротивлением 8 Ом, что легко вписывается в указанные выше 16-омные рамки. Тогда как параллельное включение динамиков (о нем позже) приведет к недопустимому (меньше 2 Ом) снижению сопротивления нагрузки обоих каналов и в результате выходу из строя усилителя.
Когда к одному каналу усиления последовательно подключается более одного динамика, это неизбежно отражается на выходной мощности. Вернемся к примеру с двумя соединенными последовательно 12-дюймовыми головками и одним 200-ваттным стереоусилителем, минимальное сопротивление нагрузки которого 4 Ом. Чтобы выяснить, сколько ватт при таких условиях сможет отдать динамикам усилитель, нужно решить еще одно несложное уравнение: Po = Pr x (Zr/Zt), где Po — подводимая мощность, Pr — измеренная мощность усилителя, Zr — сопротивление нагрузке, при котором проводились измерения реальной мощности усилителя, Zt — суммарное сопротивление динамиков, нагруженных на данный канал. В нашем случае получается: Po = 100 x (4/8). То есть 50 ватт. Динамиков у нас два, поэтому «полтинник» делится на два. В итоге каждая головка получит по 25 ватт.
Параллельное соединение динамиков
Здесь все в точности до наоборот: при параллельном соединении сопротивление нагрузке падает пропорционально количеству динамиков. Соответственно вырастает выходная мощность. Число громкоговорителей ограничено способностью усилителя работать на низких нагрузках и мощностными пределами самих динамиков, включенных параллельно. В большинстве случаев усилители вполне справляются с нагрузками в 2 ома, реже в 1 ом. Существуют аппараты, которым по зубам и 0,5 ома, но это уже действительно большая редкость. Что касается современных громкоговорителей, то здесь разброс мощностных параметров от десятков до сотен ватт.
Рисунок 2 демонстрирует, как подключить пару драйверов в параллель. Провод от плюсового выходного разъема соединяется с положительными клеммами динамиков А и В (проще всего соединить сначала выход усилителя с «плюсом» динамика А, а затем уже от него тянуть провод к динамику В). По той же схеме соединяются минусовой вывод усилителя с «минусами» обоих динамиков.
Вычисление эквивалентного сопротивления нагрузке канала усиления при параллельном соединении динамиков несколько сложнее. Формула такая: Zt = (Za x Zb) / (Za + Zb), где Zt — эквивалентное сопротивление нагрузке, a Za и Zb — сопротивление динамиков.
Теперь представим, что на низкочастотное звено в системе отводится опять-таки 2-канальный аппарат (2 х 100 Вт на нагрузку 4 Ом), но стабильно работающий при 2 омах. Включение двух 4-омных сабвуферных головок в параллель позволит значительно увеличить выходную мощность, поскольку сопротивление нагрузке канала усиления сократиться вдвое. По нашей формуле получаем: Zt = (4 х 4) / (4 + 4). В результате имеем 2 Ом, что при условии хорошего запаса по току у усилителя даст 4-кратный прирост мощности на канал: Po = 100 x (4/2). Или 200 ватт на канал вместо 50, полученных при последовательном соединении динамиков.
Последовательно-параллельное соединение динамиков
Обычно эта схема применяется для увеличения количества динамиков на борту транспортного средства с тем, чтобы добиться повышения суммарной мощности аудиосистемы при сохранении адекватного сопротивления нагрузке. То есть на один канал усиления можно задействовать сколько угодно динамиков, если их суммарное сопротивление находится в уже обозначенных нами пределах от 2 до 16 Ом.
Подключение, к примеру, 4 динамиков по этому способу производится следующим образом. Кабель от положительного выходного разъема усилителя соединяется с плюсовыми клеммами динамиков А и С. Затем «минуса» A и C подключаются к «плюсам» громкоговорителей B и D соответственно. Наконец, кабель от отрицательного выхода усилителя соединяется с минусовыми клеммами динамиков B и D.
Для вычисления суммарного сопротивления нагрузке канала усиления, который работает с четырьмя головками, соединенными по комбинаторному способу, применяется следующая формула: Zt = (Zab x Zcd) / (Zab x Zcd), где Zab — суммарное сопротивление динамиков А и В, а Zcd — суммарное сопротивление динамиков C и D (между собой они соединены последовательно, поэтому сопротивление суммируется).
Возьмем все тот же пример с 2-канальным усилителем, стабильно функционирующим при 2 омах. Только на этот раз два 4-омных сабвуфера, включенных параллельно, нас уже не устраивают, и мы хотим подключить к одному каналу усиления 4 НЧ-головки (тоже 4-омные). Для этого нам нужно знать, выдержит ли аппарат такую нагрузку. При последовательном соединении суммарное сопротивление будет равно 16 Ом, что никого не устраивает. При параллельном — 1 Ом, что уже не вписывается в параметры усилителя. Остается последовательно-параллельная схема. Простые подсчеты показывают, что в нашем случае один канал усиления будет нагружен стандартными 4 омами, раскачивая при этом сразу четыре саба. Поскольку 4 Ом — нагрузка стандартная для любого автомобильного усилителя мощности, то никаких потерь и приростов мощностных показателей в данном случае не произойдет. В нашем случае — это 100 ватт на канал, поровну поделенные на четыре 4-омных динамика.
Подводим итоги. Главное при построении подобных схем — не переусердствовать. Прежде всего в том, что касается минимальной нагрузки усилителя. Большинство современных аппаратов вполне справляются с 2-омными нагрузками. Однако это совсем не значит, что они будут работать и при 1 оме. Кроме того, на низких нагрузках снижается способность усилителя контролировать движение диффузора динамика, что чаще всего результируется в «размытом» басе.
Все три приведенных выше примера касались исключительно низкочастотного звена аудиокомплекса. С другой стороны, теоретически на одном двухканальном аппарате можно построить всю акустическую систему в автомобиле с мид-басами, среднечастотниками и твитерами. То есть с динамиками, играющими в разных областях частотного спектра. Следовательно придется задействовать пассивные кроссоверы. Здесь важно помнить, что их элементы — конденсаторы и индуктивности — должны быть согласованы с эквивалентным сопротивлением нагрузке данного канала усиления. Кроме того, фильтры сами привносят сопротивление. При этом чем дальше сигнал от полосы пропускания фильтров, тем больше сопротивление.
Подробнее почитать про сабвуферы и их типы можно в статье "Как выбрать сабвуфер и нужен ли он в автомобиле?"
Вот ссылки на наш каталог, по которым вы сможете быстро отыскать:
Господа, в прошлый раз мы с вами говорили про последовательное сопротивление резисторов . Сегодня я бы хотел вам рассказать про другой возможный вид соединения – параллельное.
Чем различается последовательное и параллельное соединение я уже писал в предыдущей статье . Но все-таки вытащу сюда картинку из той прошлой статьи, я ж знаю, что вам будет лень ходить по ссылкам .
А) – Последовательное соединение
В) – Параллельное соединение
Рисунок 1 – Последовательное и параллельное соединение
Как мы видим из рисунка 1, параллельное соединение – это такое соединение, при котором одни концы всех резисторов соединены в один узел, а другие концы – в другой узел.
Сейчас наша задача будет разобраться, как ведут себя токи , напряжения , сопротивления и мощности при таком подключении. Для этого прошу вас взглянуть на рисунок 2, где подробно разрисован расклад дел для параллельного соединения. Будем полагать, что мы знаем величины R1, R2 и R3, а также величину приложенного к схеме напряжения U. Про токи же мы ничего не знаем.
Рисунок 2 – Параллельное соединения
Что мы видим на рисунке 2? Ну, в первую очередь – два узла А и B. В узел А сходятся одни концы всех резисторов, а в узел В – другие концы. Пусть узел А имеет потенциал φ1, а узел В – потенциал φ2. Из рисунка 2 видно, что для всех резисторов R1, R2 и R3 у нас одна и та же разность потенциалов U.
Как следует из статьи про потенциалы , это означает, что напряжение на всех резисторах у нас одинаково и равно приложенному напряжению U. Это важный вывод, его следует хорошо запомнить.
С токами дело обстоит по-другому. Проанализируем рисунок 2 слева направо. Пусть у нас в цепи течет ток I. Течет он себе, течет, никого не трогает и тут вдруг натыкается на узел А. Что в этом случае говорит полюбившаяся вам статья про первый закон Кирхгофа ? А то, что ток I в узле А разделится на три тока I1, I2, I3. При этом будет выполняться равенство
То есть через резистор R1 будет протекать ток I1, через резистор R2 – ток I2, а через резистор R3 – ток I3.
Итак, у нас в системе уже тихо-мирно текут себе три тока. И все хорошо, пока они не наткнуться на узел В. Тут снова вступает в силу первый закон Кирхгофа. Эти три тока I1, I2, I3 вновь соединятся в один ток I. Причем после узла В ток будет иметь такую же величину I, какой он был до узла А.
То есть если все вышесказанное воплотить в лаконичный язык наскальной живописи, положение дел можно представить себе вот так
Как же найти эти самые токи I1, I2, I3? Господа, полагаю, вы уже догадались, что на помощь нам придет горячо нами всеми любимый закон Ома . Действительно, мы знаем сопротивления резисторов и, кроме того, нам известно, что на всех них падает одно и тоже напряжение U. Поэтому легко находим токи
Отлично, мы разобрались с напряжениями и с токами в такой схеме. А помните в статье про последовательное сопротивление мы ловко преобразовали три резистора в один с эквивалентным им сопротивлением? Нельзя ли и здесь сделать что-то подобное? Оказывается, вполне себе можно. Как мы помним, токи в схеме распределены таким вот образом
Обзовем эквивалентное сопротивление буковкой R. И подставим в это выражение только что найденные нами токи I1, I2, I3
Видим, что здесь без проблем можно сократить левую и правую части на U. Получаем
Господа, важный вывод: при параллельном соединении резисторов обратное эквивалентное сопротивление равно сумме обратных сопротивлений отдельных резисторов.
То есть для упрощения различных расчетов электрических схем такую вот цепочку параллельно соединенных резисторов можно заменить одним резистором с соответствующим сопротивлением, как показано на рисунке 3.
Рисунок 3 – Преобразование параллельного соединение
Весьма частый случай на практике, когда соединены параллельно не много резисторов, а всего два. Поэтому полезно знать наизусть итоговое сопротивление такой схемы. Давайте посмотрим, чему оно равно:
То есть, если у вас два сопротивления соединены параллельно, то по этой формуле вы легко высчитаете общее сопротивление. Рассмотрим пример. Пусть у нас параллельно соединены два резистора 10 кОм и 15 кОм. Чему равно их общее сопротивление?
Заметьте, господа, итоговое сопротивление у нас получилось 6 кОм, что меньше 10 кОм и 15 кОм. То есть при параллельном соединении общее сопротивление меньше любого из составляющих. Это всегда верно для любого количества резисторов, а не только для двух. Итоговое сопротивление всегда уменьшается (в отличии от последовательного сопротивления, где итоговое сопротивление всегда растет). Этот факт полезно запомнить.
Еще один часто встречающийся на практике случай – когда параллельно соединены несколько резисторов с одинаковым сопротивлением. Допустим, каждый из них обладает сопротивлением R1 и всего их N штук. Тогда по нашей общей формуле для эквивалентного сопротивления
То есть при параллельном соединении N одинаковых резисторов с сопротивлением R1 итоговое сопротивление будет в N раз меньше этого самого сопротивления R1.
Так-с, с током разобрались, с напряжением разобрались, с эквивалентным сопротивлением вроде тоже…осталась мощность. Для этого воспользуемся вот этим выражением, которое мы писали чуть выше в статье
Умножим левую и правую части на напряжение U.
Как мы помним из статьи про мощность произведение тока на напряжение есть мощность. То есть мы можем записать
где Р – мощность, выдаваемая источником;
P1 – мощность, рассеиваемая на резисторе R1;
P2 – мощность, рассеиваемая на резисторе R2;
P3 – мощность, рассеиваемая на резисторе R3.
Заметьте, господа, формула в точности такая же, как и для случая последовательного соединения резисторов. И там и там мощность, выдаваемая источником, равна сумме мощностей, рассеиваемых на резисторах цепи.
Итак, господа, мы рассмотрели основные соотношения при параллельном соединении резисторов. Теперь осталось поговорить, где это параллельное соединение можно использовать и для чего.
1) Ну, во-первых, параллельное соединение применяют во всех случаях, когда хотят запитать несколько нагрузок от одного источника напряжения. При этом пользуются тем свойством, что при параллельном соединении напряжения на всех нагрузках одинаково. То есть, допустим, вы берете источник напряжения, выставляете на нем напряжение 5 В и цепляете к этому источнику сразу несколько своих устройств. Узлами А и В в этом случае будут клеммы источника. На каждое из устройств в этом случае придет напряжение 5 В. Да и все устройства в вашей квартире (лампочки, компьютеры, телевизоры и все прочее) соединены между собой параллельно.
2) Второе возможное применение встречается не так часто, но, думаю, о нем тоже следует рассказать. Допустим, вы делаете какую-то схему, где необходим очень точный подгон сопротивления. Скажем, надо получить сопротивление 6 кОм. Такое сопротивление найти нелегко, их просто не продают. Зато у вас есть два сопротивления 10 кОм и 15 кОм. Вы их соединяете параллельно и получаете требуемые 6 кОм. Как показывает практика, 3 параллельных резисторов достаточно для получения итогового результирующего сопротивления требуемого номинала с весьма хорошей точностью. Конечно, таких вещей лучше избегать и, если есть возможность, всегда стараться применять стандартные сопротивления. Но бывают случаи, когда это невозможно, и тогда приходит на помощь этот метод.
3) Третий пункт будет немного похож на первый. Его суть заключается в следующим. Допустим, нам надо снять с источника питания 10 Вт мощности. А у нас в наличии только резисторы, которые позволяют рассеивать на себе 1 Вт. Что делать? Можно соединить 10 резисторов параллельно и с каждого снимать по 1 Вт. Мы же помним нашу формулу
Конечно, лучше брать не 10 резисторов, а хотя бы 15 и рассеивать на них меньше, чем 1 Вт. Работать на пределе никогда не следует.
Кстати, тут очень вовремя к моменту написания статьи пришли платы с производства! Господа, прошу вас взглянуть на рисунок 4.
Рисунок 4 – Плата нагревателя
На нем изображена плата нагревателя (флешка для масштаба). В чем суть? Имеется весьма сложное устройство, предназначенное для работы в арктических условиях. Найти же компоненты, которые надежно функционировать при температурах минус 55 градусов и при этом стоят адекватных денег и обладают адекватными размерами бывает непросто. Обычно элементная база в лучшем случае рассчитана на минус 40 градусов. И было принято решение разработать вот такой вот нагреватель для прогрева чувствительных к холоду аналоговых узлов устройства. Он управляется с микроконтроллера и автоматически включается при температурах меньше минус 40 градусов. Как вы можете видеть из рисунка 4, этот нагреватель представляет собой 30 параллельно соединенных резисторов с сопротивлениями 150 Ом. Каждый резистор, согласно документации, способен рассеивать до 1 Вт мощности. Используя изученные формулки, мы можем посчитать, что в сумме такая система обладает сопротивлением
и теоретически может рассеивать мощность
Ну, с сопротивлением вопросов нет, оно действительно равно 5 Ом. Ну, плюс-минус 5 % на допуск резисторов, что в данном случае вообще не критично. А вот с мощностью тут не так все однозначно. Помните про закон Джоуля-Ленца , который мы рассматривали? Резисторы будут греться, причем не слабо. Как показывает практика, если нагружать резисторы по полной, то есть рассеивать на каждом по 1 Вт, то в течении нескольких секунд их температура улетит за 150 градусов. Такая высокая температура критична для резистора и может привести к его разрушению. Я был готов к такому развитию событий, поэтому заложил для платы нагревателя максимальное напряжение 9 вольт. Это значит, что на каждом резисторе будет выделяться
что почти в два раза меньше максимально допустимой мощности в 1 Вт. В сумме на всей плате выделялось, соответственно
Эксперимент показал, что резисторы достигли температуры с комнатных 25 градусов до критичных 120 градусов приблизительно за 10 секунд работы и температура продолжала уверенно расти. Очевидно, если оставить на длительное время включенным такой нагреватель при комнатной температуре, он неминуемо выйдет из строя. Возможно, при работе на минус 55 градусах перегрев бы не был столь критичным, однако хотелось исключить вариант спалить плату на столе, поэтому я понизил напряжение, подаваемое на плату на 3 вольта: стал подавать 6 вольт. Теперь на каждом резисторе рассеивалось
а на всей плате
Теперь температура поднималась до 100-110 градусов примерно за 30-40 секунд работы и оставалась на этом уровне (выходила в точку термодинамического равновесия). Эта температура вполне подходит для нагревателя. Однако пока это были лишь эксперименты на столе при комнатной температуре, главный эксперимент – в термокамере на минус 55 градусах – впереди. Возможно, по его результатам потребуется чуть увеличить рассеиваемую мощность. А может все останется как есть и этой мощности будет достаточно для вывода девайса на режим за адекватное время, время покажет .
На сегодня все, господа. Удачи вам и до новых встреч!
Вступайте в нашу группу Вконтакте
Вопросы и предложения админу: This email address is being protected from spambots. You need JavaScript enabled to view it.