- Для публикации сообщений создайте учётную запись или авторизуйтесь
- Создать учетную запись
- Общие рекомендации
- Экспериментальные результаты
- Особенности трассировки печатной платы
- Почему так хорошо работают блоки из нескольких параллельных диодов
- Разница между обычным корпусом и WPL – корпусом на базе подложки кристалла
- Заключение
При выпрямлении более высоких напряжений приходится соединять диоды последовательно, с тем, чтобы обратное напряжение на каждом диоде не превышало предельного. Но вследствие разброса обратных сопротивлений у различных экземпляров диодов одного и того же типана отдельных диодах обратное напряжение может оказаться выше предельного, что повлечет пробой диодов. Поясним это примером.
Пусть в некотором выпрямителе амплитуда обратного напряжения составляет 1000 В и применены диоды с Uобр max = 400 В. Очевидно, что необходимо соединить последовательно не менее трех диодов. Предположим, что обратные сопротивления диодов Rо6р1, = Rобр2 = 1 МОм и Rо6р3 = 3 МОм. Обратное напряжение распределяется пропорционально обратным сопротивлениям, и поэтому получится Uо6р1, = Uобр2 = 200 В и Uо6р3, = 600 В.
На третьем диоде (кстати говоря, он является лучшим, так как у него наибольшее Rобр) обратное напряжение выше предельного, и он может быть пробит. Если это произойдет, то напряжение 1000 В распределится между оставшимися диодами и на каждом из них будет 500 В. Ясно, что любой из этих диодов может пробиться, после чего все обратное напряжение 1000 В будет приложено к одному диоду, который его не выдержит. Такой последовательный пробой диодов иногда происходит за доли секунды.
Для того чтобы обратное напряжение распределялось равномерно между диодами независимо от их обратных сопротивлений, применяют шунтирование диодов резисторами (рисунок 2.24).
Рисунок 2.24 – Последовательное соединение диодов
Сопротивления Rш резисторов должны быть одинаковы и значительно меньше наименьшего из обратных сопротивлений диодов. Но вместе с тем Rш не должно быть слишком малым, чтобы чрезмерно не возрос ток при обратном напряжении, т. е. чтобы не ухудшилось выпрямление. Для рассмотренного примера можно взять резисторы с сопротивлением 100 кОм.
Тогда при обратном напряжении сопротивление каждого участка цепи, состоящего из диода и шунтирующего резистора, будет несколько меньше 100 кОм и общее обратное напряжение разделится между этими участками примерно на три равные части. На каждом участке это напряжение окажется меньше 400 В и диоды будут работать надежно. Обычно шунтирующие резисторы имеют сопротивление от нескольких десятков до нескольких сотен килоом.
Параллельное соединение диодов применяют в том случае, когда нужно получить прямой ток, больший предельного тока одного диода. Но если диоды одного типа просто соединить параллельно, то вследствие неодинаковости вольт-амперных характеристик они окажутся различно нагруженными и в некоторых ток будет больше предельного. Различие в прямом токе у однотипных диодов может составлять десятки процентов.
Для примера на рисунке 2.25, а показаны характеристики прямого тока двух диодов одного и того же типа, у которых Iпр max = 0,2 А. Пусть от этих диодов требуется получить прямой ток 0,4 А. Если их соединить параллельно, то при токе 0,2 А на первом диоде напряжение равно 0,4 В (кривая 1). А на втором диоде при таком же напряжении ток будет лишь 0,05 А (кривая 2). Таким образом, общий ток составит 0,25 А, а не 0,4 А. Увеличивать напряжение на диодах нельзя, так как в первом диоде ток станет больше предельного.
Рисунок 2.25 – Параллельное соединение диодов
Из характеристик видно, что для получения во втором диоде тока 0,2 А надо иметь на нем напряжение 0,5 В, т. е. на 0,1 В больше, чем на первом диоде. Поэтому, чтобы установить правильный режим работы диодов, надо подвести к ним напряжение 0,5 В, но последовательно с первым диодом включить уравнительный резистор (рисунок 2.25, б) – сцелью поглощения излишнего для первого диода напряжения 0,1 В. Ясно, что сопротивление этого резистора Rу = 0,1 : 0,2 = 0,5 Ом. При наличии такого резистора оба диода будут нагружены одинаково током в 0,2 А.
Практически редко включают параллельно больше трех диодов. Уравнительные резисторы с сопротивлением в десятые доли ома или единицы ом обычно подбирают экспериментально до получения в рабочем режиме одинаковых токов в диодах. Иногда включают уравнительные резисторы с сопротивлением, в несколько раз большим, чем прямое сопротивление диодов, для того чтобы ток в каждом диоде определялся главным образом сопротивлением Rу.
Но в этом случае происходит дополнительное падение напряжения на Ry, превышающее в несколько раз прямое напряжение диодов, и КПД, конечно, снижается. Если нежелательно включать уравнительные резисторы, то надо подобрать диоды с примерно одинаковыми характеристиками. Однако рекомендуется по возможности не прибегать к параллельному соединению диодов.
Не нашли то, что искали? Воспользуйтесь поиском:
Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете. 8256 – | 7223 –
или читать все.
Параллельное соединение диодов Шоттки
Для публикации сообщений создайте учётную запись или авторизуйтесь
Вы должны быть пользователем, чтобы оставить комментарий
Создать учетную запись
Зарегистрируйте новую учётную запись в нашем сообществе. Это очень просто!
В данной статье рассматривается возможность использования нескольких интегральных схем (ИС) MAX40200 производства Maxim Integrated в параллельном подключении, а также их комбинированные параметры. Совместное применение нескольких ИС MAX40200 в роли идеального диода должно суммарно обеспечивать такие же характеристики, как и у одного более крупного устройства.
Общие рекомендации
MAX40200 – это идеальный диодный токовый переключатель с настолько малым падением напряжения прямого смещения на полупроводниковом переходе, что оно почти на порядок меньше, чем у диодов Шоттки. В MAX40200 реализована защита самой ИС и подключенных к выходу цепей от превышения температуры. В отключенном состоянии (на выводе EN установлен низкий уровень) ИС блокирует прямое и обратное напряжения до 6 В, что делает ее пригодной для большинства низковольтных портативных электронных устройств. При обратном смещении диодного перехода MAX40200 ток утечки меньше, чем у многих сопоставимых диодов Шоттки. MAX40200 работает с напряжением питания 1,5…5,5 В.
Идеальный интегральный диод MAX40200 имеет целый ряд преимуществ, среди которых:
- незначительный ток в дежурном режиме – 7 мкА;
- малая рассеиваемая мощность – всего 125 мкА при токе 1 А;
- небольшое падение напряжения (примерно 18 мВ) для прямого тока – до 100 мА;
- время переключения между прямым и обратным напряжением смещения – менее 100 мкс;
- компактный корпус типа WLP с четырьмя выводами;
- отпирающий/запирающий сигнал и тепловая защита.
Одной из важных особенностей ИС MAX40200, применяемой в качестве идеальных диодов, является использование MOSFET вместо обычной биполярной полупроводникой технологии, что позволяет, по сути, обеспечить для нагрузки гальваническую развязку по току. В данной статье исследуются характеристики нескольких параллельно соединенных ИС MAX40200.
Комплект из нескольких идеальных диодов должен обеспечивать те же характеристики, что и один более мощный диод. Для этого необходимо подобрать некоторое количество MAX40200. Например, можно использовать две параллельно соединенных ИС для системы на 2 А и, соответственно, четыре параллельных ИС для системы на 4 А.
Экспериментальные результаты
На рисунке 1 показаны четыре параллельно подключенных MAX40200, которые обеспечивают ток до 4 А. Если все ИС размещены близко друг к другу, то они имеют почти одинаковую температуру. И, следовательно, при одинаковой температуре должны иметь сходные характеристики. На рисунке 2 показана зависимость падения прямого напряжения на ИС от протекающего постоянного тока. На рисунке 3 сравниваются графики зависимости напряжения от тока для одной и четырех ИС MAX40200, подтверждающие, что характеристики для одного устройства MAX40200 и для четырех MAX40200 очень похожи.
Рис. 1. Типичная схема параллельного подключения диодов для увеличения нагрузочной способности цепи по току
Рис. 2. Зависимость прямого падения напряжения на MAX40200 от величины протекающего через них прямого тока
Рис. 3. Сравнение характеристик одного и четырех MAX40200
На рисунке 4 представлена схема с открытием и закрытием диодов для протекающего тока. На рисунках 5 и 6 представлены наблюдаемые результаты.
Рис. 4. Схема включения/выключения диодов
Рис. 5. Переходные процессы при открытом диоде (IFWD = 4 A)
Рис. 6. Переходные процессы при открытом/закрытом диоде (IFWD = 4 A)
Обратите внимание, что VIN на рисунке 5 представляет важный переходный процесс. Это связано с тем, что переходная характеристика меняющейся нагрузки источника питания используется при токе 0…4 А. Этот переходный процесс также виден на VLOAD.
На рисунке 7 представлена схема для измерения переходных характеристик на нагрузке. Здесь могут возникать условия для появления кратковременной повышенной нагрузки, когда проводящее устройство должно быть способным обеспечить необходимый ток с незначительными колебаниями VFWD. Это связано с тем, что VLOAD (V) обычно является источником питания для последующих цепей. На рисунке 8 показаны переходные процессы при изменяющейся нагрузке.
Рис. 7. Схема для контроля переходных процессов на нагрузке
Рис. 8. Переходные процессы на нагрузке (IFWD = 200 мА…3,8 A)
В показанной на рисунке 9 схеме используется стандартный диод Шоттки CMCH5-20 (20 В, 5 А) вместе с четырьмя ИС MAX4200. Переходный процесс создан на участке VIN2, чтобы имитировать вариант схемы диодного «ИЛИ» для выбора пути тока.
Рис. 9. Диодная схема «ИЛИ» на основе стандартного диода и четырех устройств MAX40200
Когда VIN2 (3,3 В) меньше чем VIN1 (3,6 В), выбранным источником напряжения будет VIN1 и диод D1 оказывается обратносмещенным. Когда VIN2 будет более 3,6 В, D1 переходит в проводящее состояние, а U1…U4 выключаются. На рисунках 10а и 10б отображены переходные характеристики схемы, представленной на рисунке 9.
Рис. 10. Переходные характеристики диодного соединения «ИЛИ»
Особенности трассировки печатной платы
На рисунке 11 показан типичный пример размещения дорожек на печатной плате для четырех параллельно соединенных ИС MAX40200. Как видно, цепи VDD и OUT на плате имеют медные площадки большого размера для уменьшения сопротивления и плотности тока. Обе цепи – VDD и OUT – размещены на верхней стороне платы без использования межслойных перемычек. Поскольку физический механизм, обеспечивающий разделение тока нагрузки, является тепловым, параллельно соединенные идеальные диоды должны располагаться как можно ближе друг к другу. Учитывая вероятность повышенных токов или отсутствия параллельно подключенных компонентов, следует использовать печатную плату с наиболее толстым слоем меди. Это помогает лучше рассеивать выделяющееся тепло и уменьшает падение напряжения при высоких токах. Обратите внимание, что корпус WLP оптимален для параллельного соединения нескольких устройств – этому способствуют его небольшие размеры и хорошая теплопроводность.
Рис. 11. Пример компоновки печатной платы
Как показано на рисунке 12, отдельные компоненты размещены с зазором в 12 мм, что гарантирует термическую равноценность всех ИС MAX40200. Параллельно соединенные ИС следует защитить от повышенного теплового воздействия внешних источников тепла. В противном случае все работающие при высокой температуре устройства будут иметь повышенное RON. Неравномерное распределение температуры на плате под установленными ИС приводит к неравному разделению тока. Не рекомендуется использовать переходные отверстия на основных проводящих участках платы (VDD или OUT), так как они добавляют паразитную индуктивность и увеличивают эффективное RON в основной цепи, таким образом повышая прямое падение напряжения (VFWD).
Рис. 12. Расстояние между размещенными рядом MAX40200
На рисунке 13 показана разница температур окружающей среды и платы с параллельно соединенными MAX40200. Обратите внимание что разность температур прямо пропорциональна прямому току нагрузки, проходящему через эти устройства. Данный результат был получен на плате, изображенной на рисунке 12.
Рис. 13. Температура печатной платы, изменяющаяся в зависимости от температуры окружающей среды
Почему так хорошо работают блоки из нескольких параллельных диодов
Сопротивление открытого канала MOSFET имеет резко положительный температурный коэффициент, который гарантирует, что более горячий MOSFET имеет большее сопротивление, чем более холодный, что приводит к протеканию через него немного повышенного тока. Поэтому для двух таких MOSFET устанавливается тепловой баланс, соответствующий токовому балансу. Такой тепловой баланс гарантируется правильной компоновкой печатной платы. Вообще, плотное размещение компонентов является обоснованным. Но если на плате есть другое устройство, которое рассеивает много тепла, то вызванный им тепловой градиент изменяет баланс распределения тока для параллельно соединенных идеальных диодов.
Разница между обычным корпусом и WPL – корпусом на базе подложки кристалла
Описанное выше исследование было проведено для корпуса WLP (Wafer Level Package) и является оптимальным для параллельного использования нескольких корпусов, поскольку очень малый размер, электрические характеристики этого типа интегральной упаковки и хорошая теплопроводность позволяют обеспечить достаточную термическую связь, чтобы сделать такой подход более удобным с практической точки зрения.
Из-за более высокого теплового сопротивления в корпусе типа SOT23 (обусловленного сопротивлением внутреннего соединения проводов) распределение тока и прямое падение напряжения (VFWD) –несколько хуже, чем в случае с корпусом WPL. Значительное влияние, даже при плотно размещенных корпусах типа SOT, оказывают и любые дополнительные перепады температур. Для идеальных диодов в таком корпусе рекомендуется понизить размеры до 75% от указанных в спецификации.
Заключение
Интегральный диод MAX40200 одинаково хорошо показал себя при параллельном соединении как двух, так и четырех ИС. И статические, и переходные характеристики показывают, что распределение тока является близким к поведению идеального диода, а переходные характеристики не ухудшаются. Несколько MAX40200 могут быть применены в тех случаях, когда требуется повышенный ток или пониженное падение напряжения.