Объемно центрированная кристаллическая решетка металла

Основные сведения о металлах и сплавах

В огромном ряду материалов, с незапамятных времен известных человеку и широко используемых им в своей жизни и деятельности, металлы всегда занимали особое место.

Подтверждение этому: и в названиях эпох (золотой, серебряный, бронзовый, железный века), на которые греки делили историю человечества: и в археологических находках металлических изделий (кованые медные украшения, сельскохозяйственные орудия); и в повсеместном использовании металлов и сплавов в современной технике.

Причина этого – в особых свойствах металлов, выгодно отличающих их от других материалов и делающих во многих случаях незаменимыми.

Железный век продолжается. Примерно 9 /10 всех используемых человечеством металлов и сплавов – это сплавы на основе железа. Железа выплавляется в мире примерно в 50 раз больше, чем алюминия, не говоря уже о прочих металлах.

Было время, когда железо на земле ценилось значительно дороже золота. Советский историк Г. Арешян изучал влияние железа на древнюю культуру стран Средиземноморья. Он приводит такую пропорцию: 1 : 160 : 1280 : 6400. Это соотношение стоимостей меди, серебра, золота и железа у древних хеттов.

До настоящего времени основной материальной базой машиностроения служит черная металлургия, производящая стали и чугуны. Эти материалы имеют много положительных качеств и в первую очередь обеспечивают высокую конструкционную прочность деталей машин. Однако эти классические материалы имеют такие недостатки как большая плотность, низкая коррозионная стойкость. Потери от коррозии составляют 20% годового производства стали и чугуна. Поэтому, по данным научных исследований, через 20…40 лет все развитые страны перестроятся на массовое использование металлических сплавов на базе титана, магния, алюминия. Эти легкие и прочные сплавы позволяют в 2-3 раза облегчить станки и машины, в 10 раз уменьшить расходы на ремонт.

Кристаллическое строение металлов. Характерные свойства металлов. Виды кристаллических решеток, дефекты их строения.

Металлы – простые вещества, обладающие в обычных условиях характерными свой­ствами:

  • специфический «металлический» блеск (хорошая отражательная способность и непрозрачность);
  • высокая электропроводность;
  • высокая теплопроводность;
  • пластичность;
  • отрицательный температурный коэффициент электропроводности (возрастание электросопротивления с повышением температуры).

Самыми распространенными в природе металлами являются алюминий, железо, кальций, натрий, калий, магний и титан.

Характерные свойства металлов обусловлены строением их атомов.

Из курса физики известно, что атом состоит из положительно заряженного ядра и вращающихся вокруг него отрицательно заря­женных частичек – электронов. В ядре атома находятся положи­тельно заряженные частицы – протоны. Количество протонов рав­но количеству окружающих ядро электронов, т. е. атом в целом является электрически нейтральным.

Атом может терять или приобретать электроны. Тогда он пре­вращается в электрически заряженный атом — ион. При избытке электронов ион заряжен отрицательно, при недостатке электро­нов — положительно.

Принадлежащие атому электроны разделяют на валентные (внешние), движущиеся по внешним орбитам, и внутренние, дви­жущиеся по более близким к ядру орбитам.

Благодаря слабой связи внешних электронов с ядром в метал­лах всегда имеются электроны, подвергающиеся воздействию по­ложительно заряженных ядер близлежащих атомов. Такие электроны называются свободными. Свободные электроны принадлежат не одному какому-либо ядру, а блуждают по всему металлу, вра­щаясь вокруг ядра то одного, то другого иона.

Наличием большого количества свободных электронов (называемых также коллективными или «электронный газ») и объясняются указанные вы­ше характерные признаки металлов.

В отличие от металлов неметаллы, как правило, хрупки, ли­шены металлического блеска, имеют низкую тепло- и электропро­водность. Электросопротивление неметаллов с повышением тем­пературы понижается.

Все металлы в нормальных условиях являются твёрдыми телами (за исключением ртути) и представляют собой вещества, состоящие из большого числа мелких зёрен – кристаллов, упорядоченно расположенных друг относительно друга в пространстве. Этот порядок определяется понятием кристаллическая решётка.

Другими словами, кристаллическая решетка это воображаемая пространственная решетка, в узлах которой располагаются частицы, образующие твердое тело.

Основными типами кристаллических решёток являются:

1) Объемно – центрированная кубическая (ОЦК) (см. рис.1 а), атомы располагаются в вершинах куба и в его центре (V, W, Ti, Feα)

Читать также:  Приспособление для стягивания пружин

2) Гранецентрированная кубическая (ГЦК) (см. рис. 1 б), атомы располагаются в вершинах куба и по центру каждой из 6 граней (Cu, Al, Ag, Au, Feγ)

3) Гексагональная, в основании которой лежит шестиугольник:

простая – атомы располагаются в вершинах ячейки и по центру 2 оснований (углерод в виде графита);

плотноупакованная (ГПУ) – имеется 3 дополнительных атома в средней плоскости (цинк).

Объемно центрированная кристаллическая решетка металла

Рисунок 1 – Основные типы кристаллических решеток: а – объемно-центрированная кубическая;

б– гранецентрированная кубическая; в – гексагональная плотноупакованная

Способность некоторых металлов существовать в различных кристаллических формах в зависимости от внешних условий (давление, температура) называется аллотропиейили полиморфизмом.

Примером аллотропического видоизменения в зависимости от температуры является железо (Fe): t 1539°С – ОЦК – Feσ.

Примером аллотропического видоизменения, обусловленного изменением давления, является углерод: при низких давлениях образуется графит, а при высоких – алмаз.

Используя явление полиморфизма, можно упрочнять и разупрочнять сплавы при помощи термической обработки.

В кристаллической решетке реальных металлов имеются различные дефекты (несовершенства), которые нарушают связи между атомами и оказывают влияние на свойства металлов. Различают точечные, линейные и поверхностные дефекты.

Одним из распространенных несовершенств кристаллического строения является наличие точечных дефектов: вакансий, дислоцированных атомов и примесей (рис. 2).

Объемно центрированная кристаллическая решетка металла

Рисунок 2 – Точечные дефекты

Вакансия – отсутствие атомов в узлах кристаллической решетки.

Дислоцированный атом – это атом, вышедший из узла решетки и занявший место в междоузлие.

Примесные атомы всегда присутствуют в металле, так как практически невозможно выплавить химически чистый металл. Они могут иметь размеры больше или меньше размеров основных атомов и располагаются в узлах решетки или междоузлиях.

Точечные дефекты вызывают незначительные искажения решетки, что может привести к изменению свойств тела (электропроводность, магнитные свойства), их наличие способствует процессам диффузии и протеканию фазовых превращений в твердом состоянии. При перемещении по материалу дефекты могут взаимодействовать.

Основными линейными дефектами являются дислокации.

Д Объемно центрированная кристаллическая решетка металлаислокация – это дефекты кристаллического строения, представляющие собой линии, вдоль и вблизи которых нарушено характерное для кристалла правильное расположение атомных плоскостей. Простейшие виды дислокаций – краевые и винтовые.

Рисунок 3 – Искажения в кристаллической решетке при наличии краевой дислокации

Плотность дислокации в значительной мере определяет пластичность и прочность материала. С увеличением плотности дислокаций возрастает внутреннее механическое напряжение, изменяются оптические свойства, повышается электросопротивление металла. Дислокации ускоряют старение и другие процессы, уменьшают химическую стойкость, поэтому в результате обработки поверхности кристалла специальными веществами в местах выхода дислокаций образуются ямки.

Дата добавления: 2015-11-20 ; просмотров: 4239 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Объемно центрированная кристаллическая решетка металла

Сокращенное название: ОЦК решетка.

Еnglish: BCC (body-centered cubic) lattice.

Содержание

Структура решетки [ править ]

Атомы расположены в центрах ячеек и вершинах простой кубической решетки. Область пространства, лежащая ближе к данному атому, чем к остальным атомам, [1] для ОЦК решетки представляет собой ромбододекаэдр.

Распространенность в природе [ править ]

Этой решеткой обладает железо (при не слишком высокой температуре), щелочные металлы, а также барий, ванадий, вольфрам, молибден, хром и др.

Геометрия решетки [ править ]

Орты (единичные векторы) [math]<f n>_alpha[/math] , задающие направление от некоторого атома кристаллической решетки к его ближайшим соседям, могут быть представлены в виде:

где [math]<f i>,,<f j>,,<f k>[/math] — орты Декартовой системы координат.

Кристаллическое строение металлов. Кристаллическая решетка металлов. Металлы в периодической системе Менделеева

От DA

Из школьного курса химии известно, что все элементы, которые сгруппированы по определенным правилам в периодическую таблицу Менделеева, можно условно разделить на металлы и неметаллы. В этой статье будет рассказано о кристаллическом строении металлов, их физико-химических свойствах, а также о дефектах на атомном уровне, которые в них присутствуют.

Периодическая таблица и металлы

Объемно центрированная кристаллическая решетка металла

В XIX веке благодаря своему блестящему уму и многим годам труда Дмитрий Иванович Менделеев составил таблицу, собрав в нее все известные на то время химические элементы. Каждому из них в таблице отведено определенное положение в соответствии с числом протонов в атомном ядре. Вся таблица делится на 7 периодов (горизонтальные строки) и 8 групп (вертикальные строки). Чем больше период, тем больше радиус атома соответствующего элемента, и тем на более высоких орбиталях расположены его валентные электроны. Наоборот, чем старше группа (движение по таблице слева направо), тем больше валентных электронов находится на последней орбитали и тем меньше радиус атома.

Читать также:  Чем обрабатывать сварочный шов нержавейки

Любой элемент таблицы можно условно отнести либо к металлам, либо к неметаллам. Металлы расположены по левую сторону от диагонали бор (B) – полоний (Po). Если взглянуть на таблицу, то можно сразу понять, что количество металлов в несколько раз превышает число неметаллов.

Что такое металл и чем он отличается от неметалла?

Иными словами, как можно понять, что перед нами находится металлический материал? Ответы на все эти вопросы можно получить, если рассмотреть уникальные свойства металлов. К ним относятся следующие основные:

  • Наличие металлического блеска при полировке поверхности. Все металлы блестят, в своем большинстве они имеют серый цвет, однако, некоторые металлы обладают специфической окраской, например, висмут розовый, медь красноватая, а золото желтое.
  • Высокая теплопроводность и электропроводность. При комнатной температуре наиболее высокие показатели для этих физических свойств характерны для меди и серебра.
  • При комнатной температуре практически все металлы находятся в твердом агрегатном состоянии материи. Исключение составляет ртуть, которая плавится уже при -39 oC.
  • Будучи в твердом состоянии, металлы кристаллическим строением характеризуются. Если расплав рассматриваемого материала слишком быстро охлаждать, то он приобретает аморфную структуру, в которой все же сохраняется ближний порядок.
  • Температуры плавления и плотности металлов варьируются в широких пределах. Так, элемент вольфрам является самым тугоплавким (3410 oC). Самым же тяжелым считается осмий (в 22,6 раза плотнее воды), а самым легким – литий (почти в 2 раза менее плотный, чем вода).
  • Все металлы химически активны. Поскольку они обладают низкой электроотрицательностью, то в химических реакциях их атомы отдают электроны и превращаются в положительно заряженные ионы (катионы).

Объемно центрированная кристаллическая решетка металла

Выше в списке были перечислены основные свойства металлов, которые их отличают от неметаллических материалов. Примерами последних являются кислород, азот, благородные газы, сера, кремний, углерод и некоторые другие. Заметим, что все живые организмы состоят в основном из неметаллов.

Какие металлы бывают?

Металлы в периодической системе Менделеева делятся на несколько групп. Перечислим и кратко охарактеризуем их:

  • Щелочные. Эти металлы имеют всего 1 валентный электрон, они чрезвычайно химически активны, имеют низкую плотность и являются отличными проводниками тепла и электричества. Примерами их являются литий, натрий и калий.
  • Щелочноземельные. К ним относятся кальций, магний, стронций. Эти металлы имеют 2 валентных электрона, поэтому они также являются химически активными.
  • Переходные. Это металлы с переменной валентностью, которые имеют пустые или полупустые орбитали d и f типа. Это самая многочисленная группа металлов. К ним относятся титан, ванадий, хром, никель, вольфрам, осмий, золото и многие другие.
  • Лантаноиды и актиноиды. Большая часть этих элементов является нестабильными и проявляет различную степень радиоактивности.
  • Постпереходные. Это те элементы, после которых по периоду идут металлоиды, а затем неметаллы. Самыми известными из них являются свинец, алюминий и олово.

Черные и цветные металлы

Выше была приведена классификация рассматриваемых элементов в соответствии с их электронным строением и положением в периодической системе. Помимо нее, существует еще одно разделение, которое не связано с атомным строением – это понятие о черных и цветных металлах.

Черным является железо и все сплавы с его участием. Примеры цветных металлов – это алюминий, золото, серебро, медь и другие, а также сплавы, которые не содержат железа. Причина такого разделения проста, черные металлы являются дешевыми и недолговечными (разрушаются в результате коррозии, ржавеют). Наоборот, цветные металлы характеризуются способностью образовывать пленки оксидные, которые предотвращают основную массу материала от дальнейшего химического разрушения.

Металлическая связь

Изучая атомно-кристаллическое строение металлов, следует сказать несколько слов об особенностях химической связи между рассматриваемыми элементами. Поскольку электроотрицательность металлов низкая, то, объединяясь в кристаллическую решетку, каждый атом отдает один или несколько валентных электронов. Эти электроны слабо связаны с ядром, поэтому они легко от него отрываются уже при комнатных температурах.

Совокупность валентных электронов, которые свободно движутся в пространстве между ионными остовами в кристаллической решетке металлов, называется электронным газом. Благодаря ему кусок металла легко проводит тепло и электричество.

Электрическое поле положительно заряженных ионных остовов компенсируется отрицательным полем "размазанного" по объему металла электронного газа. Такая связь называется металлической. Она кардинальным образом отличается от других типов химической связи. Например, в ковалентной атомы не отдают электроны в межатомное пространство, они становятся общими только для двух атомов. Наоборот, в ионной связи один атом полностью лишает второго валентных электронов, присоединяя их к себе, и приобретая отрицательный заряд.

Читать также:  Микросхема omvk2p300 1242u bfs12ag1 и ее аналоги

Кристаллическое строение металлов. Типы кристаллических решеток

Когда металл образует твердую структуру, то все его атомы стремятся занять такие положения в пространстве относительно друг друга, чтобы они соответствовали минимуму потенциальной энергии. Этому минимуму соответствует кристаллическая решетка.

Под кристаллической решеткой понимают такую пространственную атомную структуру, которая может быть получена, если известны координаты ограниченного числа ее атомов и вектора их трансляции в пространстве. Указанное число атомов называется базисом решетки, а их положения образуют так называемую элементарную ячейку.

Все металлы кристаллизуются в трех основных типах решеток:

  • гранецентрированная кубическая (ГЦК);
  • объемно-центрированная кубическая (ОЦК);
  • гексагональная плотноупакованная (ГПУ).

Благодаря кристаллическому строению металлы обладают такими свойствами, как пластичностью, упругостью и металлическим блеском.

Решетки ГЦК, ОЦК, ГПУ

Изучая кристаллическое строение металлов, охарактеризуем подробнее каждый тип кристаллической решетки. Начнем с ГЦК. Она показана ниже на рисунке.

Объемно центрированная кристаллическая решетка металла

Как видно, это решетка представляет собой кубик, в котором атомы расположены в его вершинах и в центрах всех шести граней. Применяя методы кристаллографии, несложно показать, что для получения такой решетки в пространстве достаточно всего четырех атомов и векторов трансляций, совпадающих с ребрами куба.

Примерами металлов, которые кристаллизуются в ГЦК, являются алюминий, медь, золото и серебро. Железо образует ГЦК решетку только при высоких температурах.

ОЦК решетка показана ниже.

Объемно центрированная кристаллическая решетка металла

Мы видим, что она соответствует кубику, в вершинах и в центре которого находится атом. Всего два атома необходимо, чтобы в прямоугольных декартовых координатах построить ОЦК решетку. Такие металлы, как ванадий, тантал, ниобий, вольфрам имеют именно эту кристаллическую структуру.

Наконец, ГПУ решетка. Она представлена ниже на рисунке.

Объемно центрированная кристаллическая решетка металла

Эта кристаллическая решетка металлов отличается от двух предыдущих тем, что она в пространстве образует не куб, а правильную шестиугольную призму, которая состоит из шести атомов. В данной структуре кристаллизуются такие элементы, как титан, цирконий, магний и кобальт.

Понятие об индексах Миллера

Чтобы удобно было описывать численно показанные выше пространственные решетки, в кристаллографии используют так называемые индексы Миллера. Они представляют собой наборы чисел, которые позволяют точно определить положение в пространстве данного атомного ряда или атомной плоскости. По этим числам судят о поверхностных энергиях, о способности металлов проявлять пластические свойства. Например, в ГЦК решетке краевые дислокации движутся по плоскостям (1,1,1) (эти плоскости являются максимально плотноупакованными, нормалью к ним будут диагонали куба).

Дефекты в металлах

Объемно центрированная кристаллическая решетка металла

Выше мы показали идеальную ситуацию, когда все атомы находятся на своих местах, и пространственную структуру всего металлического куска можно получить с помощью простых трансляций элементарной ячейки. В действительности же существуют множество несовершенств кристаллического строения металлов. Они называются дефектами.

Все дефекты можно по геометрическому признаку отнести к одному из четырех типов:

  1. Точечные. Вакансии, межузельные атомы, наличие внедренных атомов других элементов, создающих микроскопические локальные напряжения.
  2. Линейные. Дислокации – обрывы кристаллических плоскостей, которые обеспечивают пластичность всех металлов.
  3. Плоские – границы зерен. Любой металл состоит из множества монокристаллов, которые друг с другом соединены в различной ориентации через межзеренные границы.
  4. Объемные. Поры, различные фазовые включения, которые упрочняют металл и снижают его пластичность.

Влияние дефектов на свойства

Объемно центрированная кристаллическая решетка металла

Как правило, дефекты кристаллического строения металлов приводят к снижению их теплопроводности и электропроводности, материал становится более прочным и менее пластичным. Ярким примером является сталь, которая за счет междоузельных атомов углерода и наличия разных фаз (цементита, графита) в кристаллической решетке железа, значительно прочнее, чем чистый металл.

С развитием нанотехнологий влияние дефектов на свойства металлов может быть неоднозначным. Так, с уменьшением размера зерна может наблюдаться увеличение пластичности материала, что связано с появлением совершенно иного механизма пластической деформации – зернограничного проскальзывания, которое по своей сути отличается от дислокационного.

Реальный кристалл металла

Какой бы химический металлический элемент не рассматривался, в действительности он представляет собой твердое вещество, в котором маленькие монокристаллы (зерна) соединены друг с другом в различных ориентациях. Такая структура образует поликристалл. В нем, помимо границ зерен, присутствуют дефекты всех четырех типов, включая примеси таких неметаллов, как кислород, азот и водород. Последний из-за своих размеров легко проникает в любую кристаллическую решетку, образует с ее ионами твердые фазы, которые приводят к охрупчиванию металла, что является одной из актуальных проблем металловедения.

Оцените статью
Добавить комментарий

Adblock
detector