Как работает шим контроллер в блоке питания

Всё о Интернете, сетях, компьютерах, Windows, iOS и Android

Что такое ШИМ-контроллер PWM и для чего он нужен

Как работает шим контроллер в блоке питания

Любой радиолюбитель, начинающий телемастер или электрик рано или поздно столкнётся с такой штукой, как ШИМ-контроллер. За рубежом он маркируется как PWM. Поэтому сегодня я хочу остановиться на вопросе что такое ШИМ-контроллер, как он работает и для чего нужен. Даже если Вы не планируете заниматься ремонтом электронной техники, всё равно эта статья будет интересна для общего ознакомления.

Широтно-импульсный модулятор — принцип работы

Аббревиатура ШИМ расшифровывается, как широтно-импульсный модулятор. На английском это будет так — pulse-width modulation или PWM. В теле- и радио-технике ШИМ-контроллеры используются для преобразования напряжения, их можно встетить даже в качестве узлов системы управления скоростью электроприводов в бытовых приборах, меняя скорость электродвигателя. PWM-контроллер есть даже в обычных импульсных блоках питания.

Как работает шим контроллер в блоке питания

Там постоянное напряжение на входе преобразуется в импульсы прямоугольной формы, которые формируются с определенной частотой и с определённой скважностью. На выходе, с помощью управляющих сигналов, получается регулировать работу целого транзисторного модуля большой мощности. Таким образом разработчики получили блок управления напряжением регулируемого типа, который значительно меньше и удобнее старых, которые используют понижающий трансформатор, диодный мост и фильтр помех.

Главные плюсы ШИМ:

В Интернете Вы можете встретить ШИМ-контроллер на Arduino или NE555. Это не совсем контроллер, а скорее уже генератор ШИМ-импульсов, в которых нет возможности подключения цепи обратной связи. Такие устройства подходят больше для регуляторов напряжения, чем для обеспечения стабильного питания приборов, ведь они могут использоваться только для регулирования выходных параметров, но не для их стабилизации.

Стандартная схема ШИМ-контроллера, который используется в теле-, радио- и иной электронной аппаратуре, характеризуется наличием нескольких выходов.

Общий вывод (GND) — контакт подключается к общему проводу схемы питания контролера. Он соединен с аналогичным контактом схемы подачи питания модуля и контроллирует напряжение на выходе схемы, отключая ее при снижении значения ниже пороговой величины.

Вывод питания (VC) — этот вывод ШИМ-контроллера отвечает за энергоснабжение схемы и подключение питания. Как правило, вывод контроля питания и вывод питания располагаются рядом друг с другом. Не перепутайте его с выводом VCC.

Вывод контроля питания (VCC) — следит, чтобы напряжение питания микросхемы было выше определенного значения. Обычно этот контакт соединяют с VC. Если напряжение на этом выводе падает ниже заданного порогового значения для данного PWM-контроллера, то контроллер выключается. Если этого не делать, то при снижении напряжение на выходе схемы, то транзисторы начнут открываться не полностью и будут быстро нагреваться, что приведёт к поломке.

Выход контроллера OUT – это выходное управляющее напряжение, другими словами отсюда подаётся управляющий ШИМ-сигнал для силовых ключей. Тут надо отметить, что микросхемы бывают разные. Например, есть с друмя выходами — двухтактные, которые применяются для управления двухплечевыми каскадами. Да и сам выходной каскад может быть одно- и двухтактным. Тут главное не запутаться!

Вывод VREF — Опорное напряжение. Обеспечивает работу функции формирования стабильно опорного напряжения. Как правило, екомендуется соединять его с общим проводом конденсатором 1 мкФ для повышения качества и стабильности опорного напряжения.

Вывод ILIM — Ограничитель выходного тока. Это сигнал с датчика тока. Если напряжение на этом выводе превышает заданный порог (как правило, это 1 Вольт), то ШИМ-контроллер закрывает силовые ключи. Если же превышается ещё больший порог (обычно 1.5 Вольта), то PWM-контроллер сбрасывает напряжение на ножке мягкого старта и импульсы на выходе прекращаются.

Вывод ILIMREF — задаёт значение ограничения выходного тока на выводе ILIM.

Вывод SS — так называемый «мягкий старт». Напряжение на этом контакте ограничивает максимально возможную ширину импульсов. Сюда ШИМ-контроллер подает ток фиксированной силы.

Вывод RtCt – используется для подключения времязадающей RC-цепи, используемой для определения частоты ШИМ-сигнала.

Вывод RAMP – это ввод сравнения. Рабоает это так. На контакт подаётся пилообразное напряжение. Как только оно превышает значение напряжение на выходе усиления ошибки, вывод OUT появляется отключающий сигнал. Это основа ШИМ-регулирования.

Вывод CLOCK – тактовые импульсы. Используются для синхронизации между собой сразу нескольких ШИМ-контроллеров. В этом случае RC-цепь подключается только к ведущему контроллеру, RT ведомых соединяется с Vref, а CT ведомых соединяюся с общим.

Вывод INV — это инвертирующий вход компаратора. На нём построен усилитель ошибки. Чем больше напряжение на INV, тем длиннее выходные импульсы.

Вывод NONINV – это неинвертирующий вход компаратора. Его обычно подключают к общему проводу — GND.

Вывод EAOUT — выход усилителя ошибки — Error Amplifier Output. С этого вывода осуществляется частотная коррекция усилителя ошибки, путём подачи сигналов на INV через частотозависимые цепи. Дело в том, что PWM-контроллер достаточно медленно реагирует на воздействие через вход усилителя ошибки и потому схема может сгореть из-за возбуждения. Поэтому и применяется вывод EAOUT.

Как проверить ШИМ-контроллер

Есть несколько способов как сделать проверку ШИМ-контроллера. Можно, конечно это сделать без мультиметра, но зачем так мучаться, если можно воспользоваться нормальным прибором.

Читать также:  Светодиодный светильник начал моргать что делать

Прежде, чем проверять работу ШИМ-контроллера, необходимо выполнить базовую диагностику самого блока питания. Она выполняется так:

Шаг 1. Внимательно осмотреть в выключенном состоянии сам источник питания, в котором установлен PWM. В частности надо тщательно осмотреть электролитические конденсаторы на предмет вздутости.

Шаг 2. Провести проверку предохранителя и элементов входного фильтра блока питания на исправность.

Шаг 3. Провести проверку на короткое замыкание или обрыв диодов выпрями­тельного моста. Прозвонить их можно не вы­паивая из платы. При этом надо быть уверен­ным, что проверяемая цепь не шунтируется обмотками трансформатора или резистором. Если есть на это подозрение, то всё таки придётся выпаивать элементы и проверять уже по отдельности.

Шаг 4. Провести проверку исправностм выходных цепей, а именно электролитических конденсаторов низкочастотных филь­тров, выпрямительных диодов, диодных сборок и т.п.

Шаг 5. Провести проверку силовых транзисторов высокочастотного преобразователя и тран­зисторов каскада управления. При этом в обязательном порядке проверьте возвратные диоды, которые включенны параллельно электродам коллектор-эмиттер силовых транзисторов.

Проверка ШИМ-контроллера — видео инструкции:

В большинстве современных электронных устройств практически не используются аналоговые (трансформаторные) блоки питания, им на смену пришли импульсные преобразователи напряжения. Чтобы понять, почему так произошло, необходимо рассмотреть конструктивные особенности, а также сильные и слабы стороны этих устройств. Мы также расскажем о назначении основных компонентов импульсных источников, приведем простой пример реализации, который может быть собран своими руками.

Конструктивные особенности и принцип работы

Из нескольких способов преобразования напряжения для питания электронных компонентов, можно выделить два, получивших наибольшее распространение:

  1. Аналоговый, основным элементом которого является понижающий трансформатор, помимо основной функции еще и обеспечивающий гальваническую развязку.
  2. Импульсный принцип.

Рассмотрим, чем отличаются эти два варианта.

БП на основе силового трансформатора

Рассмотрим упрощенную структурную схему данного устройства. Как видно из рисунка, на входе установлен понижающий трансформатор, с его помощью производится преобразование амплитуды питающего напряжения, например из 220 В получаем 15 В. Следующий блок – выпрямитель, его задача преобразовать синусоидальный ток в импульсный (гармоника показана над условным изображением). Для этой цели используются выпрямительные полупроводниковые элементы (диоды), подключенные по мостовой схеме. Их принцип работы можно найти на нашем сайте.

Упрощенная структурная схема аналогового БП

Следующий блок играет выполняет две функции: сглаживает напряжение (для этой цели используется конденсатор соответствующей емкости) и стабилизирует его. Последнее необходимо, чтобы напряжение «не проваливалось» при увеличении нагрузки.

Приведенная структурная схема сильно упрощена, как правило, в источнике данного типа имеется входной фильтр и защитные цепи, но для объяснения работы устройства это не принципиально.

Все недостатки приведенного варианта прямо или косвенно связаны с основным элементом конструкции – трансформатором. Во-первых, его вес и габариты, ограничивают миниатюризацию. Чтобы не быть голословным приведем в качестве примера понижающий трансформатор 220/12 В номинальной мощностью 250 Вт. Вес такого агрегата – около 4-х килограмм, габариты 125х124х89 мм. Можете представить, сколько бы весила зарядка для ноутбука на его основе.

Как работает шим контроллер в блоке питанияПонижающий трансформатор ОСО-0,25 220/12

Во-вторых, цена таких устройств порой многократно превосходит суммарную стоимость остальных компонентов.

Импульсные устройства

Как видно из структурной схемы, приведенной на рисунке 3, принцип работы данных устройств существенно отличается от аналоговых преобразователей, в первую очередь, отсутствием входного понижающего трансформатора.

Как работает шим контроллер в блоке питанияРисунок 3. Структурная схема импульсного блока питания

Рассмотрим алгоритм работы такого источника:

  • Питание поступает на сетевой фильтр, его задача минимизировать сетевые помехи, как входящие, так и исходящие, возникающие вследствие работы.
  • Далее вступает в работу блок преобразования синусоидального напряжения в импульсное постоянное и сглаживающий фильтр.
  • На следующем этапе к процессу подключается инвертор, его задача связана с формированием прямоугольных высокочастотных сигналов. Обратная связь с инвертором осуществляется через блок управления.
  • Следующий блок – ИТ, он необходим для автоматического генераторного режима, подачи напряжения на цепи, защиты, управления контроллером, а также нагрузку. Помимо этого в задачу ИТ входит обеспечение гальванической развязки между цепями высокого и низкого напряжения.

В отличие от понижающего трансформатора, сердечник этого устройства изготавливается из ферримагнитных материалов, это способствует надежной передачи ВЧ сигналов, которые могут быть в диапазоне 20-100 кГц. Характерная особенность ИТ заключается в том, что при его подключении критично включение начала и конца обмоток. Небольшие размеры этого устройства позволяют изготавливать приборы миниатюрных размеров, в качестве примера можно привести электронную обвязку (балласт) светодиодной или энергосберегающей лампы.

Теперь, как и обещали, рассмотрим принцип работы основного элемента данного устройства – инвертора.

Как работает инвертор?

ВЧ модуляцию, можно сделать тремя способами:

  • частотно-импульсным;
  • фазо-импульсным;
  • широтно-импульсным.

На практике применяется последний вариант. Это связано как с простотой исполнения, так и тем, что у ШИМ неизменна коммуникационная частота, в отличие от двух остальных способов модуляции. Структурная схема, описывающая работу контролера, показана ниже.

Как работает шим контроллер в блоке питанияСтруктурная схема ШИМ-контролера и осциллограммы основных сигналов

Алгоритм работы устройства следующий:

Генератор задающей частоты формирует серию прямоугольных сигналов, частота которых соответствует опорной. На основе этого сигнала формируется UП пилообразной формы, поступающее на вход компаратора КШИМ. Ко второму входу этого устройства подводится сигнал UУС, поступающий с регулирующего усилителя. Сформированный этим усилителем сигнал соответствует пропорциональной разности UП (опорное напряжение) и UРС (регулирующий сигнал от цепи обратной связи). То есть, управляющий сигнал UУС, по сути, напряжением рассогласования с уровнем, зависящим как от тока на грузке, так и напряжению на ней (UOUT).

Читать также:  Источник постоянного тока обозначение на схеме

Данный способ реализации позволяет организовать замкнутую цепь, которая позволяет управлять напряжением на выходе, то есть, по сути, мы говорим о линейно-дискретном функциональном узле. На его выходе формируются импульсы, с длительностью, зависящей от разницы между опорным и управляющим сигналом. На его основе создается напряжение, для управления ключевым транзистором инвертора.

Процесс стабилизации напряжения на выходе производится путем отслеживания его уровня, при его изменении пропорционально меняется напряжение регулирующего сигнала UРС, что приводит к увеличению или уменьшению длительности между импульсами.

В результате происходит изменение мощности вторичных цепей, благодаря чему обеспечивается стабилизация напряжения на выходе.

Для обеспечения безопасности необходима гальваническая развязка между питающей сетью и обратной связью. Как правило, для этой цели используются оптроны.

Сильные и слабые стороны импульсных источников

Если сравнивать аналоговые и импульсные устройства одинаковой мощности, то у последних будут следующие преимущества:

  • Небольшие размеры и вес, за счет отсутствия низкочастотного понижающего трансформатора и управляющих элементов, требующих отвода тепла при помощи больших радиаторов. Благодаря применению технологии преобразования высокочастотных сигналов можно уменьшить емкость конденсаторов, используемых в фильтрах, что позволяет устанавливать элементы меньших габаритов.
  • Более высокий КПД, поскольку основные потери вызывают только переходные процессы, в то время как в аналоговых схемам много энергии постоянно теряется при электромагнитном преобразовании. Результат говорит сам за себя, увеличение КПД до 95-98%.
  • Меньшая стоимость за счет применения мене мощных полупроводниковых элементов.
  • Более широкий диапазон входного напряжения. Такой тип оборудования не требователен к частоте и амплитуде, следовательно, допускается подключение к различным по стандарту сетям.
  • Наличие надежной защиты от КЗ, превышения нагрузки и других нештатных ситуаций.

К недостаткам импульсной технологии следует отнести:

Наличие ВЧ помех, это является следствием работы высокочастотного преобразователя. Такой фактор требует установки фильтра, подавляющего помехи. К сожалению, его работа не всегда эффективна, что накладывает некоторые ограничения на применение устройств данного типа в высокоточной аппаратуре.

Особые требования к нагрузке, она не должна быть пониженной или повышенной. Как только уровень тока превысит верхний или нижний порог, характеристики напряжения на выходе начнут существенно отличаться от штатных. Как правило, производители (в последнее время даже китайские) предусматривают такие ситуации и устанавливают в свои изделия соответствующую защиту.

Сфера применения

Практически вся современная электроника запитывается от блоков данного типа, в качестве примера можно привести:

  • различные виды зарядных устройств; Как работает шим контроллер в блоке питанияЗарядки и внешние БП
  • внешние блоки питания;
  • электронный балласт для осветительных приборов;
  • БП мониторов, телевизоров и другого электронного оборудования.

Как работает шим контроллер в блоке питанияИмпульсный модуль питания монитора

Собираем импульсный БП своими руками

Рассмотрим схему простого источника питания, где применяется вышеописанный принцип работы.

Как работает шим контроллер в блоке питанияПринципиальная схема импульсного БП

Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – от 150 кОм до 300 кОм (подбирается), R3 – 1 кОм.
  • Емкости: С1 и С2 – 0,01 мкФ х 630 В, С3 -22 мкФ х 450 В, С4 – 0,22 мкФ х 400 В, С5 – 6800 -15000 пФ (подбирается),012 мкФ, С6 – 10 мкФ х 50 В, С7 – 220 мкФ х 25 В, С8 – 22 мкФ х 25 В.
  • Диоды: VD1-4 – КД258В, VD5 и VD7 – КД510А, VD6 – КС156А, VD8-11 – КД258А.
  • Транзистор VT1 – KT872A.
  • Стабилизатор напряжения D1 – микросхема КР142 с индексом ЕН5 – ЕН8 (в зависимости от необходимого напряжения на выходе).
  • Трансформатор Т1 – используется ферритовый сердечник ш-образной формы размерами 5х5. Первичная обмотка наматывается 600 витков проводом Ø 0,1 мм, вторичная (выводы 3-4) содержит 44 витка Ø 0,25 мм, и последняя – 5 витков Ø 0,1 мм.
  • Предохранитель FU1 – 0.25А.

Настройка сводится к подбору номиналов R2 и С5, обеспечивающих возбуждение генератора при входном напряжении 185-240 В.

В данный момент я в качестве подработки иногда выкупаю нерабочую технику на Авито и Юле, восстанавливаю и реализую. Вчера выкупил блок питания PowerMan IP-S450-T7 на мощность 450 ватт, честных ватт, блок питания имеет две линии по цепям 12 вольт – 17 и 16 ампер, в сумме 33 ампера. Есть разъем дополнительного питания видеокарты 6 пин.

Как работает шим контроллер в блоке питания

Несмотря на то что блок питания имеет кулер 80 мм, а не 120 мм, как большинство современных блоков питания, эти характеристики очень даже неплохие и позволят запитать без проблем игровой компьютер начального уровня. При покупке нерабочих блоков питания всегда беру крестовую отвертку с собой и если продавец не против, осматриваю плату блока питания на предмет подгара, подгоревших деталей, взорвавшихся предохранителей, транзисторов, а также любимых всеми мастерами за легкость выполнения ремонта вздувшихся электролитических конденсаторов.

Как работает шим контроллер в блоке питания

Вскрыв корпус ничего особенного не обнаружил – внешне все было нормально. Блок был куплен и начав сегодня проводить диагностику включил блок в сеть с целью проверить наличие “дежурки” (дежурного напряжения). Обычно если дежурное напряжение есть (5 вольт на фиолетовом проводе разъема 24 Pin относительно земли, черного провода) – это само по себе говорит уже о многом.

Как работает шим контроллер в блоке питания

Как минимум, не вскрывая блок питания мы уже знаем, что наш предохранитель цел, а далее для мастера имеющего уже пусть и не большой опыт следует, что мосфет дежурного напряжения цел, маломощный транзистор раскачки дежурки, если он присутствует, тоже цел. Здесь есть еще один нюанс: блок питания АТХ можно условно поделить на две части, на “горячую”, высоковольтную, и низковольтную “холодную” часть БП.

Читать также:  Как определить погрешность манометра

Как работает шим контроллер в блоке питания

В горячей части мы можем судить о поломке по одному простому признаку: если у нас сгорел предохранитель, скорее всего у нас короткое замыкание в высоковольтной части. Это или высоковольтный мосфет дежурки, или высоковольтные силовые транзисторы, или диодный мостик, или игрек конденсаторы, или высоковольтный неполярный конденсатор. Все они находятся в горячей части и по этим признакам мы можем облегчить диагностику при ремонте блока питания.

Как работает шим контроллер в блоке питания

В моем случае предохранитель был цел, и вот к чему было такое отступление от темы статьи: в данном случае дежурка была организована нестандартным образом – не через ключ дежурки, применяющимся наиболее часто в слабых по мощности блоках питания, а с помощью ШИМ контроллера дежурного напряжения. Так вот, диагностику начал с ШИМ контроллера дежурного напряжения, мне был облегчен ремонт тем, что под микросхемой на корпусе блока питания было небольшое почернение – подгар.

Как работает шим контроллер в блоке питания

Замерив сразу сопротивление между ножками микросхемы (она идет в корпусе DIP 7) между двумя парами ножек, было обнаружено низкое сопротивление – менее 50 Ом. Приняв решение демонтировать микросхему как наиболее вероятного виновника поломки, был удивлен сопротивлением между ножками микросхемы – оно было в пределах нормы, померяв сопротивление между контактами на плате ошибочно решил что виновата была обвязка микросхемы и как оказалось позднее погорела не только она.

Как работает шим контроллер в блоке питания

Изначально померяв что у нас по питанию (ножки 3 и 5) обнаружил что там сопротивление равно 47 Ом. Посмотрев по схеме обнаружил что параллельно питанию микросхемы установлен стабилитрон на напряжение стабилизации 18 Вольт. Выпаяв одну ножку убедился, что на результат измерений влиял в том числе и он. Мне повезло, что ранее был приобретен с Али экспресс набор стабилитронов напряжением стабилизации 3.3 – 30 вольт, так что проблемой это не стало.

Как работает шим контроллер в блоке питания

После замены стабилитрона одно из низких сопротивлений по цепям микросхемы пропало. Затем посмотрев по схеме что у нас находится ближе всего, по цепям выводов микросхемы 1 и 3 увидел что там должен стоять резистор номиналом 330 Ом. Приподняв одну из его ножек и отпаяв, убедился что виновник второго низкого сопротивления которое определил при измерениях был этот резистор.

Как работает шим контроллер в блоке питания

Затем прозвонив низкоомный резистор по цепям питания микросхемы (вывод 5) от вспомогательной обмотки импульсного трансформатора обнаружил, что этот резистор также сгорел и находится в обрыве. Заменил его, поставив 2 резистора сопротивлением 10 Ом параллельно и получил практически требующийся нам номинал 5.8 Ом. Решил включить блок питания в сеть, но меня поджидала неудача – дежурного напряжения на разъеме 24 пин так и не появилось.

Как работает шим контроллер в блоке питания

Еще раз повторюсь: демонтировав микросхему не нашел низкого сопротивления между ее выводами. Керамические конденсаторы в цепях обвязки микросхемы в коротком замыкании не были, но решив исключить перед заменой микросхемы все возможные варианты демонтировал оба керамических конденсатора и проверил их транзистор-тестером. Оба оказались рабочими. Что же, делать нечего, надо собираться в радиомагазин.

Как работает шим контроллер в блоке питания

Микросхема была в наличии в радиомагазине и стоимость ее была не очень высокой – 80 рублей, я съездил и приобрел ее. Демонтировав нерабочую микросхему и запаяв новую, блок питания включился – дежурное напряжение появилось, все напряжения были в норме. Данный ремонт не потребовал каких-то особенных знаний в диагностике, внешний осмотр помог выявить предполагаемого виновника, а затем путем проверки всех деталей которые могли погореть при выходе микросхемы из строя и замены их на новые, путем исключения, была восстановлена работоспособность этого БП АТХ. Но не всегда диагностика бывает такой явной и иногда приходится потратить 6-7 и более часов на ремонт техники, а в особо тяжелых случаях и несколько дней. Причем 80-90 % времени, как это обычно бывает, уходит на диагностику, и только 10-20 % на демонтаж старых и последующий монтаж новых деталей. Стоимость данного блока питания при закупе составила 100 рублей, плюс 80 рублей стоимость микросхемы (цену ранее приобретенных деталей не учитываю, их стоимость была не значительна).

Как работает шим контроллер в блоке питания

Реализовать же данный блок питания после тестов со средней по мощности видеокартой, можно будет рублей за 600-700. Либо собрать с применением этого БП игровой системник начального уровня. Всего ремонт блока питания вместе с поездкой в радиомагазин занял 5-6 часов.

Подведём итог ремонта

По нынешним меркам кризиса и роста цен, кто-нибудь, житель крупных городов, имеющий высокую по российским меркам зарплату, может скажет что сэкономлена не бог весть какая сумма, больше времени своего потрачено было. Но если вернуться к тому, что сейчас на дворе очередной кризис, экономия данной суммы для большинства людей умеющих держать в руках паяльник, проводить диагностику приборов и умеющих считать деньги, вряд ли была бы лишней, пусть даже для сборки своего личного системного блока. А раз так – то люди, имеющие опыт и практические знания в области электроники, уже имеют плюс по сравнению с людьми, которые этих знаний не имеют, а соответственно не имеют и данной возможности. Всем удачных ремонтов, автор статьи AKV.

Оцените статью
Добавить комментарий

Adblock
detector